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Question 1 (4 marks)
Applying implicit differentiation gives:

1 1
1

2 21
2� � �

�
� ��tan y x

y
dy
dx

dy
dx

x 	 A2

Note: Deduct 1 mark for a single error.
Substituting point (0, 1) gives:
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Question 2 (3 marks)
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Question 3 (5 marks)
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b.	 Arg 2 2
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Note: Consequential on answer to Question 3a.

Question 4 (4 marks)

a.	 The vector resolute of 


a  in the direction of 


b  is given by 
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b.	 The Cartesian equation is given by 
�
� ����

n ⋅P P0 ,  where 
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Question 5 (3 marks)
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Question 6 (4 marks)
� � �

� �� �
f x x e x e

e x x

x x

x

( ) 4 2

2 2

3 2 4 2

2 3 4� A1
�� � �� � � �� �

� � �� �
f x e x x e x x

x e x x

x x

x

( ) 4 2 2 6 4

4 4 3

2 3 4 2 2 3

2 2 2� A1
�� �

� � �
� � �

f x

x e x x
x

x

( )

( )( )
, ,

0

4 1 3 0
3 1 0

2 2

�� �� � � � � �

�� �� � �
�� �� � � �

�

�

�

f x

f

f

3 0 3

3 0

1 0

concave up for 

concave  up for ,  (stationary point of inflection at 0)x x� � �1 0

� M1

x� �� � � � �( , ) ( , ) \ { }3 1 0 	 A1

Question 7 (4 marks)
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Question 8 (6 marks)
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Given that t ≥ 0, et ≥ 1 ⇒ – et ≤ –1 ⇒ x ≤ –1.	 A1

c.	 Let P be a point on the curve y = x 2 + 2x – 1 (from part b.).
The coordinates of P are given by (x, x 2 + 2x – 1).
Finding the distance from P to the origin gives:
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Minimising the distance gives:
d
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Considering the numerator only gives:
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When x = a:
2a3 + 6a2 + 3a – 2 = 0	 M1

Note: Consequential on answer to Question 8b.
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Question 9 (4 marks)
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Substituting x = –5 into the equation gives:

A B C
A
A

�� � �� � � �� � �� � � �� � � � � �� � � � � �
� �
� �

5 4 5 5 5 2 5 13 5 1
29 116

4

2 2

Substituting x = 0 and then A = – 4 gives:
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Question 10 (3 marks)

Assuming sin(x) + cos(x) < 1 for some x� �
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This is false, since sin(x) ≥ 0 and cos(x) ≥ 0 for x� �
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Therefore, by contradiction, proof is complete.


