Victorian Certificate of Education 2024

STUDENT NUMBER

					L	LUCI
Figures						
Words						

SPECIALIST MATHEMATICS

Trial Written Examination 1

Reading time: 15 minutes Total writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 21 pages with a detachable sheet of miscellaneous formulas at the end of this booklet.

Instructions

- Detach the formula sheet from the end of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Latter

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude g m/s², where g = 9.8.

Question 1 (5 marks)

Given the differential equation $\frac{dy}{dx} = 2x\sqrt{16-9y^2}$, $y(1) = \frac{2}{3}$.

a. Solve the differential equation, expressing your answer in the form y = f(x).

b. Find the value of $\frac{d^2y}{dx^2}$ when x=1 and $y=\frac{2}{3}$.

2 marks

3 marks

Question 2 (4 marks)

Let $f: D \to R$, $f(x) = \frac{x^2 - 5x + 4}{x}$, where *D* is the maximal domain of *f*.

i. Determine the equations of all the asymptotes on the graph of y = f(x).

1 mark

ii. Determine the coordinates of all the turning points on the graph of y = f(x).

1 mark

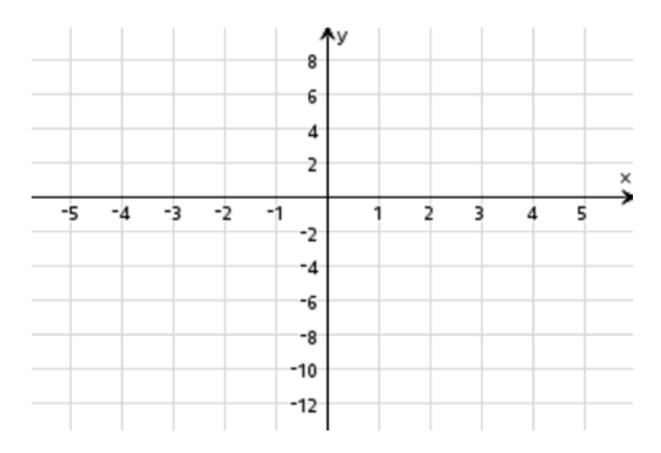
iii. Show that the graph of y = f(x) has no points of inflexion.

1 mark

http://copyright.com.au

iv. Sketch the graph of $y = f(x) = \frac{x^2 - 5x + 4}{x}$ on the axes below, labelling turning points, axial intercepts and the equations of all asymptotes.

1 mark



Question 3 (6 marks)

An ice block falls vertically from rest from a high cloud. Its acceleration is given by $a = 9.8 - 0.2v^2$ ms⁻² where v is the velocity in ms⁻¹ and x is the distance fallen in metres after a time t seconds.

	$7\left(1-e^{-\frac{14t}{5}}\right)$	
b.	Show that $v = \frac{14t}{14t}$	•
	$1+e^{-\frac{1}{5}}$	

3 mark

Question 4 (5 marks)

Given the three points P(1,2,3), Q(-1,2,-1), R(-1,-2,5).

Show that the equation of the plane which passes through the points P, Q and R is given by -4x+3y+2z=8.

2 marks

b. The plane -4x + 3y + 2z = 8 and the line $2 - x = \frac{y - 4}{2} = \frac{z - 2}{c}$ intersect at an acute angle of $\cos^{-1}\left(\frac{5\sqrt{29}}{29}\right)$, determine the value of c.

3 marks

Question 5 (5 marks)

a.	Solve the equation $z^5 + 1 = 0$, $z \in C$, giving your answers in polar form.	2 . 1
		2 mark
).	Verify that the equation $z^5 + 1 = 0$ can be expressed in the form $(z+1)Q(z) = 0$ where	
	$Q(z) = z^4 - z^3 + z^2 - z + 1$	1 mark

c.	Let $u = z + \frac{1}{z}$ show that $Q(z) = 0$ can be expressed in the form $u^2 - u - 1 = 0$.	

1 n	nark

d.	Hence find the value $\cos\left(\frac{3\pi}{5}\right)$
----	--

	(5)	
1 mark		

Question 6 (3 marks)

The weights of a carrots from a local farm are normally distributed with a mean of 70 grams with a standard deviation of 5 grams.

Z has the standard normal distribution and given that Pr(-1.2 < Z < 1.2) = 0.770.

	eight greater than 292 grams. orrect to three decimal places.		
orve your answer c	offect to three decimal places.		2
Find the probabili	ty that the man weight of four corrects	vis hotwoon 67 and 72 grams	
_	ty that the mean weight of four carrots correct to three decimal places.	s is between 67 and 73 grams.	
_	ty that the mean weight of four carrots correct to three decimal places.	s is between 67 and 73 grams.	
_		s is between 67 and 73 grams.	1:
_		s is between 67 and 73 grams.	1:
_		s is between 67 and 73 grams.	1:
_		s is between 67 and 73 grams.	1 1 —
_		s is between 67 and 73 grams.	1 : —
_		s is between 67 and 73 grams.	1 : ———————————————————————————————————
_		s is between 67 and 73 grams.	1:
_		s is between 67 and 73 grams.	1:
_		s is between 67 and 73 grams.	1 1 ——————————————————————————————————
_		s is between 67 and 73 grams.	1:
_		s is between 67 and 73 grams.	1: ————————————————————————————————————

Question 7 (4 marks)

Prove by induction that $47^n + 53 \times 47^{n-1}$ is divisible by 100 for $n \in \mathbb{N}$.			

Question 8 (5 marks)

Let x =	$\log_e\left(\sec\left(2t\right) + \tan\left(\frac{1}{2}\right)\right)$	$1(2i)$ $\sin(2i)$	d	$dt = 2 \tan(2i) \sin(2i)$	(21)	
						2
						_
					 	
						_

b.	A curve is given by the parametric equations $x = \log_e(\sec(2t) + \tan(2t)) - \sin(2t)$ and	
	$y = \cos(2t)$. When part of the curve between $t = 0$ and $t = \frac{\pi}{4}$ is rotated about the x-axis it	
	forms a volume of revolution, find the surface area of this volume of revolution.	
		3 marks
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
	· 	_

2024 Kilbaha	VCE S	Specialist	Mathematics	Trial	Examination	1

Page 16

Question 9	(3 marks)			
Find $\int t^3 \sin(t)$	2) dt			

End of question and answer book for the 2024 Kilbaha VCE Specialist Mathematics Trial Examination 1

PayID: 47065111373 Kilbaha Education (Est. 1978) (ABN 47 065 111 373)

PO Box 3229

Cotham Vic 3101

Australia

Email: kilbaha@gmail.com

Tel: (03) 9018 5376

Web: https://kilbaha.com.au

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

Specialist Mathematics formulas

Mensuration

area of a	r^2 $(0, \sin(0))$	volume of	$\frac{4}{3}\pi r^3$
circle segment	$\frac{r^2}{2}(\theta - \sin(\theta))$	a sphere	3"
volume of	$\pi r^2 h$	area of	$\frac{1}{2}bc\sin(A)$
a cylinder	$\pi r n$	a triangle	$2^{2 \operatorname{csin}(n)}$
volume of	$\frac{1}{3}\pi r^2 h$	sine rule	a = b = c
a cone	3 " "		$\frac{\sin(A)}{\sin(B)} - \frac{\sin(C)}{\sin(C)}$
volume of	$\frac{1}{2} \Delta h$	cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$
a pyramid	$\frac{1}{3}Ah$		

Algebra, number and structure (complex numbers)

$z = x + yi = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	$ z = \sqrt{x^2 + y^2} = r$	
$-\pi < \operatorname{Arg}(z) \le \pi$	$z_1 z_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2)$	
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	de Moivre's theorem	$z^n = r^n \mathrm{cis}(n\theta)$

Circular (trigonometric) functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2\left(x\right) = \sec^2\left(x\right)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\sin(2x) = 2\sin(x)\cos(x)$	
$\cos(2x) = \cos^2(x) - \sin^2(x)$ = $2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$
$\sin^2(ax) = \frac{1}{2}(1 - \cos(2ax))$	$\cos^2(ax) = \frac{1}{2}(1 + \cos(2ax))$

Data analysis, probability and statistics

for independent random variables $X_1, X_2,, X_n$	$E(aX_{1}+b) = aE(X_{1} + a_{2}X_{2} + + a_{2}X_{1} + a_{2}X_{2} + + a_{1}E(X_{1}) + a_{2}E(X_{2} + a_{2}E(X_{1}) + a_{2}E(X_{2}) + a_{2}E(X_{2} + a_{2}E(X_{1}) + a_{2}E(X_{2}) + a_{2}E(X_{2} + a_{2}E(X_{1}) + a_{2}E(X_{2}) + a_{2}E(X_{2}) + a_{2}E(X_{2} + a_{2}E(X_{2}) + $	$(a_n X_n)$ $(x_1) + \dots + a_n E(X_n)$ (x_1)
for independent identically distributed variables $X_1, X_2,, X_n$	$E(X_1 + X_2 + + X_n)$ $Var(X_1 + X_2 + + X_n)$	
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$	```
distribution of sample mean \overline{X}	mean	$E(\overline{X}) = \mu$
	variance	$\operatorname{Var}\left(\bar{X}\right) = \frac{\sigma^2}{n}$

Vectors in two and three dimensions

$\underline{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$	$\left \underline{r}(t) \right = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$
	$\dot{z}(t) = \frac{dz}{dt} = \frac{dx}{dt}\dot{z} + \frac{dy}{dt}\dot{z} + \frac{dz}{dt}\dot{k}$
for $r_1 = x_1 i + y_1 j + z_1 k$	vector scalar product
and $r_2 = x_2 i + y_2 j + z_2 k$	$r_1 \cdot r_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$
22 12 22	vector cross product
	$\begin{vmatrix} \dot{i} & \dot{j} & \dot{k} \end{vmatrix}$
	$ \vec{r}_{1} \times \vec{r}_{2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \end{vmatrix} = (y_{1}z_{2} - y_{2}z_{1})\vec{i} + (x_{2}z_{1} - x_{1}z_{2})\vec{j} + (x_{1}y_{2} - x_{2}y_{1})\vec{k} $
	$\begin{vmatrix} x_2 & y_2 & z_2 \end{vmatrix}$
vector equation of a line	$\underline{r}(t) = \underline{r}_1 + t\underline{r}_2 = (x_1 + x_2 t)\underline{i} + (y_1 + y_2 t)\underline{j} + (z_1 + z_2 t)\underline{k}$
parametric equation of line	$x(t) = x_1 + x_2t$ $y(t) = y_1 + y_2t$ $z(t) = z_1 + z_2t$
vector equation of a plane	$\underline{r}(s,t) = \underline{r}_0 + s\underline{r}_1 + t\underline{r}_2$
	$= (x_0 + x_1 s + x_2 t) \underline{i} + (y_0 + y_1 s + y_2 t) \underline{j} + (z_0 + z_1 s + z_2 t) \underline{k}$
parametric equation of a plane	$x(s,t) = x_0 + x_1 s + x_2 t$ $y(s,t) = y_0 + y_1 s + y_2 t$ $z(s,t) = z_0 + z_1 s + z_2 t$
Cartesian equation of a plane	ax + by + cz = d

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c \ , \ n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e(x) + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}(\cot(ax)) = -a\csc^2(ax)$	$\int \csc^2(ax) dx = -\frac{1}{a}\cot(ax) + c$
$\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax)$	$\int \sec(ax)\tan(ax)dx = \frac{1}{a}\sec(ax) + c$
$\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$	$\int \csc(ax)\cot(ax)dx = -\frac{1}{a}\csc(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(ax)\right) = \frac{1}{\sqrt{1-(ax)^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\cos^{-1}\left(ax\right)\right) = \frac{-1}{\sqrt{1-\left(ax\right)^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\tan^{-1}(ax)\right) = \frac{a}{1+(ax)^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$
	$\int (ax+b)^{-1} dx = \frac{1}{a} \log_e (ax+b) + c$

Calculus- continued

product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
	$\frac{dx}{dx}$ $\frac{dx}{dx}$
quotient rule	$\frac{du}{du} - u\frac{dv}{du}$
	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	dy _ dy du
	$\frac{d}{dx} - \frac{d}{du} \frac{d}{dx}$
integration by parts	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
Euler's method	If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$,
	then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n, y_n)$
arc length parametric	$\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area Cartesian about the <i>x</i> -axis	$\int_{x_1}^{x_2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
surface area Cartesian about the <i>y</i> -axis	$\int_{y_1}^{y_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
surface area parametric about the <i>x</i> -axis	$\int_{t_1}^{t_2} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area parametric about the <i>y</i> -axis	$\int_{t_1}^{t_2} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Kinematics

acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt}$	$= v \frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	
constant acceleration formulas	v = u + at	$s = ut + \frac{1}{2}t^2$	
	$v^2 = u^2 + 2as$	$s = \frac{1}{2}(u+v)t$	

END OF FORMULA SHEET