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Exam 1

Question 1 (4 marks)

Proof by induction (new in study design) for a series - and the question really holds the students' hand!
 

Consider the statement  ,  where .+ + + ⋯ + = 1 -
1
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n ∈ N

a. Show that if , the statement is true. 1 markn = 1

Base case: n = 1

LHS = ,  RHS = 1 - =
1
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⟹ LHS = RHS □

 
b. Assume that the statement is true for n = k

Write down the assumption in terms of 1 markk

Induction Hypothesis:   for some + + + ⋯ + = 1 -
1
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c. Hence, prove by mathematical induction that ,  for 2 marks+ + + ⋯ + = 1 -
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LHS = + + + ⋯ + +
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        = 1 - +  
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by the inductive hypothesis

        = 1 - 1 - = 1 - = RHS
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Given the base case in part  and the above induction step, it follows from induction that a

,  for all .. + + + ⋯ + = 1 -
1
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Question 2 (4 marks)

Proof by induction (new in study design) for an inequality - less hand holding

a. Consider the inequality  for  , where . Show that . 1 mark2 > nn 2 n ≥ n0 n ∈ N n = 50

 
When n = 4 :  2 = 16 ≯ 4 = 164 2

When :  n = 5 2 = 32 > 5 = 255 2

 
It's clear what they want... the inequality is true for  but not true for . n = 0, 1 n = 2, 3, 4
But strange wording! Maybe it should be something like 

Consider the inequality , where . 2 > nn 2 n ∈ N

This inequality is true for all . Show that the smallest such  is .n ⩾ n0 n0 n = 50

b. Prove by mathematical induction that  for  , where . 3 marks2 > nn 2 n ≥ 5 n ∈ N

 
Let  be the statement that .P n( ) 2 > nn 2

Already have the base case,  is true.P 5( )
 

Assume that  is true for some : i.e.,  P k( ) n = k 2 > kk 2

What to show that this implies , i.e. the inequality  is true.P k + 1( ) 2 > k + 1k+1 ( )2

 
  by the induction hypothesis2 = 2 × 2 > 2kk+1 k 2

We need to show that 2k > k + 1   ⇔  k - 2k > 1 ⇔  k - 1 > 2 ⇔ k ⩾ 3 2 ( )2 2 ( )2

As , we have  k ⩾ 5 > 3

 and so 2 > k + 1k+1 ( )2 P k ⟹ P k + 1( ) ( )

So, by the principle of induction,  for all integer 2 > nn 2 n ≥ 5

Question 3 (4 marks)

Proof by induction (new in study design) for divisibility - even less hand holding

Prove by mathematical induction that the number  is divisible by  for all 9 − 5n n 4 n ∈ N

 
Let  be the statement that  is divisible by  D n( ) 9 − 5n n 4

Check the base case: ,  , which is divisible by 4.n = 0 D 0 = 9 - 5 = 1 - 1 = 0( ) 0 0

For monsters that say , could also check , which is also divisible by 4.0 ∉ N D 1 = 9 - 5 = 4( ) 1 1

 
Assume that  is true for some , i.e.,  for some D k( ) k ∈ N 9 - 5 = 4mk k m ∈ N

 
Then for :n = k + 1

 

9 - 5k+1 k+1 = 9 9 - 5 + 9 × 5 - 5k k k k+1

 = 9 4m + 9 - 5 5  ,  ( ) ( ) k by the induction hypothesis

 = 4 9m + 5  ,   k which is divisible by 4

So, D k ⟹ D k + 1( ) ( )

So, by the principle of induction,  is divisible by 4 for all 9 − 5n n n ∈ N



Question 4 (3 marks)

Proof by contradiction is new in the study design.

Use proof by contradiction to prove that if  is odd, where , then  is even.n n ∈ N n + 13

 
This is kind of annoying, as a direct proof would be cleaner. Let's see that first...
Given  is odd  for  n ⟺  n = 2m + 1 m ∈ N

Then n + 1 = 2m + 1 + 1 = 8m + 12m + 6m + 1 + 1 = 2 4m + 6m + 3m + 1 = 2k3 ( )3 3 2 3 2

where . So  is even for any odd .k = 4m + 6m + 3m + 1 ∈ N3 2 n + 1 = 2k3 n
 
Let's be careful, the original statement is P ⟹ Q,    P = "n ",  Q = "n + 1 "with  is odd 3  is even
To use a proof by contradiction, we first assume the negation of what is to be proved, i.e., P ⟹ ¬Q
 
Assume, for contradiction, that there exists an odd  such that  is odd  (as odd  not even).n n + 13 ⇔

If  is odd,  then  for  n  n = 2m + 1 m ∈ N

Then n + 1 = 2m + 1 + 1 = 8m + 12m + 6m + 1 + 1 = 2 4m + 6m + 3m + 1 = 2k3 ( )3 3 2 3 2

So no matter what odd  we start with,  is even, contradicting our assumption. n n + 13

So, for all odd ,  is even.n n + 13

 

Question 5 (3 marks)

Proof by contradiction is new in the study design.
 

Use proof by contradiction to prove that + >3 5 11
 

Assume the negation: + ⩽   3 5 11

  (because both sides above are positive)⟺ + ⩽ 113 5
2

⟺ 8 + 2 ⩽ 1115

⟺ 2 ⩽ 315

⟺ 4 × 15 ⩽ 3 = 92

But clearly , which contradicts our assumption60 > 9
 

So + >3 5 11
 
Again, it feels like the same argument could be run directly, without using proof by contradiction.



Question 6 (4 marks)

Surface area of a solid of revolution are new in the study design
.

The curve given by , where  is rotated about the -axis to form a solid of revolution.y = 4 - x2 x ∈ -1, 1[ ] x
Find the surface area of this solid of revolution
 

 

Question 7 (5 marks)

Another surface area of a solid of revolution - around -axis this timey
 

The curve given by  is rotated about the -axis to form a solid of revolution.y =  x y
Find the surface area of the part of this solid of revolution where .x ∈ 0, 8[ ]
 

-2 -1 1 20

-2

-1

1

2

This is like the outside surface of a napkin ring.
 

Area is the sum of frustrums = 2𝜋y dx
1

∫
-1

1 +
dy

dx

2

Need = =
dy

dx

1

2

-2x

4 - x2

-x

y

Area = 2𝜋 y dx = 2𝜋  dx
1

∫
-1

1 +
x

y

2

2

1

∫
-1

y + x2 2

Given the curve is an arc of a circle centered at the origin, x + y =2 2

Area = 2𝜋  2dx = 4𝜋  1dx = 8𝜋
1

∫
-1

1

∫
-1

Check: The whole sphere would have area , which is 2 times more, seems ok - 4𝜋 2 = 16𝜋( )2

and is what we'd get if we increase the domain to -2, 2[ ]

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 80
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area = 2𝜋x dy,   x = y ,  = 3y
2

0
∫ 1 +

dx

dy

2

note: 3 dx

dy
2

 = 2𝜋 y dy,    u = 1 + 9y ,   du = 36y dy
2

0
∫ 3 1 + 9y4 let 4 3

 =  du = y = 145 - 1
𝜋

18 1
∫

1+9×16

u
𝜋

18

2

3
3/2

145

1

𝜋

27
145

 

Question 8 (4 marks)

Another surface area of a solid of revolution - but parametric this time.
 
Determine the surface area obtained by rotating the curve defined by the parametric equations

, where , about the -axis.x = 𝜃,  y = 𝜃sin3 cos3 𝜃 ∈ 0,
𝜋

2
y

 

Check: This should be a bit less than the area of a cone radius 1

Area of cone = 𝜋rs = 𝜋 1 ≈ 1.414𝜋( ) 2
 

Question 9 (3 marks)

Find the surface area of revolution formed when the curve defined by the parametric equations

,  where , is rotated about the -axis.x = ,  y = t
4

3
t + 1( )3 1

2
2 0 ≤ t ≤ 1 x

 
 

-1 10

-1

1
This is a concave-curved conic shape. 

 is the top (vertex), 𝜃 = 0 x, y = 0, 1( ) ( )

 is the point 𝜃 = 𝜋 / 2 x, y = 1, 0( ) ( )
We're in the 1st quadrant, so sine and cosine are positive.

area = 2𝜋x d𝜃
0
∫

𝜋/2

+
dx

d𝜃

2
dy

d𝜃

2

 = 2𝜋 𝜃
0
∫

𝜋/2

sin3 3 𝜃 𝜃 + -3 𝜃 𝜃sin2 cos
2

cos2 sin
2

 = 6𝜋 𝜃 𝜃 𝜃  d𝜃
0
∫

𝜋/2

sin3 sin cos 𝜃 + 𝜃(sin )2 (cos )2

 = 6𝜋 𝜃 𝜃 d𝜃,    u = 𝜃,  du = 𝜃 d𝜃
0
∫

𝜋/2

sin4 cos let sin cos

 = 6𝜋 u du = 6𝜋 u = = 1.2𝜋
1

0
∫ 4 1

5
5

1

0

6𝜋

5



 

Question 10 (7 marks)

The logistic differential equation is new in the study design.
 
The population of bacteria, , in a Petri dish satisfies the logistic differential equationP t( )

= 2P 6 - = 12P 1 -
dP

dt

P

8000

P

48000

where  is measured in hours and the initial population is 4000 bacteria.t
 
a. Find the maximum number of bacteria predicted by this model. 1 mark

0 = ⟹ P = 0  P = 48000
dP

dt
or

So, max number of bacteria is 48000.
Note that this is the horizontal asymptote  as , but given it's a continuous model P = 48000 t ∞→

for a discrete population, it will round up to the whole number eventually...
 
b. Find the number of bacteria when the population is growing at its fastest rate. 2 marks
 

= 12 - = 0 ⟹ P = 24000
d P

dt

2

2

P

2000
So, the max growth occurs at half the max population.
Note that as  is a negative quadratic in , you can also see the max growth occurs halfway P' t( ) P
between the zeros  and , so at .P = 0 P = 48000 24000

 
c. Solve the differential equation to find  as a function of . 4 marksP t

Separable equation:

= dt 
dP

2P 6 -
P

8000

1 2 3 40

-1

1 area = 2𝜋y dt
1

0
∫ +␒x2 ␒y2

 = 𝜋 t  dt
1

0
∫ 2 2 t + 1 + t( )1/2 2

( )2

 = 𝜋 t  dt
1

0
∫ 2 t + 4t + 42

 = 𝜋 t  dt
1

0
∫ 2 t + 2( )2

 = 𝜋 t t + 2  dt
1

0
∫ 2( )

 = 𝜋 t + t = 𝜋 + =
1

4
4 2

3
3

1

0

1

4

2

3

11𝜋

12



⟹  t = 4000 dP = +  dP∫ 1

48000 - P P( )

1

12
∫ 1

48000 - P

1

P

          = P - 48000 - P + C,         0 < P < 48000 
1

12
(loge( ) loge( )) nb so the arguments of logs are positive

When , sot = 0,  P = 4000

0 = + C = + C ⟹ C = 11
1

12
loge

4000

48000 - 4000

1

12
loge

1

11

1

12
loge( )

 

Question 11 (4 marks)

Integration by parts - without the hand holding "hey, look at this derivative" stuff from the last study design
 

Find x 2x dx∫ 2 cos( )

 
Plan, hit the  with derivatives....x2

I = x 2x dx∫ 2 cos( )

 = x 2x dx = x 2x - x 2x dx
1

2
∫ 2 d

dx
sin( )

1

2
2 sin( ) ∫ sin( )

 = x 2x + x 2x dx = x 2x + x 2x - 2x dx
1

2
2 sin( )

1

2
∫ d

dx
cos( )

1

2
2 sin( )

1

2
cos( )

1

2
∫cos( )

 = x 2x + x 2x - 2x + C
1

2
2 sin( )

1

2
cos( )

1

4
sin( )

 

I = x 2x + x 2x - 2x + CCheck:  
d

dx

d

dx

1

2
2 sin( )

1

2
cos( )

1

4
sin( )

                    = x 2x + x 2x + 2x - x 2x - 2x = x 2x  ☺sin 2 cos
1

2
cos sin

1

2
cos 2 cos

 

Alternatively, as it did not explicitly require integration by parts, define I a = ax dx ( ) ∫cos( )

 ⟹  I'' a = - x ax dx = - x ax dx( )
d

da
∫ sin( ) ∫ 2 cos( ) ⟹ I =  -I'' 2( )
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⟹ 12 t = loge

11P

48000 - P

⟹ = e
11P

48000 - P
12t

 

⟹ 11P = e 48000 - P12t( )
 

⟹ P = 48000 
e

11 + e

12t

12t

 

⟹ P =
48000

1 + 11e-12t

P 1000 bacteria

t (hours)



So, I a = ax   ⟹  I' a = - ax + ax( )
1

a
sin( ) ( )

1

a2
sin( )

x

a
cos( )

⟹ I'' a = ax - ax - ax - ax( )
2

a3
sin( )

x

a2
cos( )

x

a2
cos( )

x

a

2

sin( )

⟹ -I'' 2 = - 2x + 2x + 2x + C  ☺( )
1

4
sin

x

2
cos

x

2

2

sin

 

Question 12 (3 marks)

Vector equation of a plane is new in study design
 
The vectors  lie in a plane that passes through the point .a = 2i - 3j + k,   b = 4i + 2j - 3k 3,  2,  1( )
Find the Cartesian equation of this plane.
 
Let  be the position vector of the point r = 3i + 2j + k0

and  be the position vector of any point on the plane. r

Then  is in the span of {a, b}, i.e., all points in the plane are parameterised r - r0

as .r s, t = r + s a + t b( ) 0

To get the Cartesian equation, dot this with the normal  n = a × b

& use  ⟹ a ⋅ n = b ⋅ n = 0 r ⋅ n = r ⋅ n0

 
The normal vector (not normalised) is 
n = a b - a b i + a b - a b j + a b - a b k( 2 3 3 2) ( 3 1 1 3) ( 1 2 2 1)

  = 9 - 2 i + 4 + 6 j + 4 + 12 k( ) ( ) ( )

  = 7i + 10j + 16k

[A good check when calculating by hand is  ]a ⋅ n = b ⋅ n = 0
 
We need: r ⋅ n = 3 × 7 + 2 × 10 + 1 × 16 = 570

 
So the Cartesian equation is 
7x + 10y + 16z = 57
 

Question 13 (6 marks)

Equation of a plane again - and intersection with a line - both new in the SD
 
a. Find the equation of the plane that passes through the points ,  P 3, 3, 6( ) Q 1, −1, 2( )

and . 4 marksR 5, 2, 0( )
 

It doesn't specify whether it wants Cartesian or Parametric form. 
But 4 marks is a bit of work, so probably wants the Cartesian equation...

 

Let ,   ,   a = - = 2i - j - 6kOR OP b = - = 2i + 4j + 4kOP OQ r = = i - j + 2k0 OQ
 

The Parametric equation of the plane is
r s, t = r + s a + t b = 1 + 2s + 2t i + -1 - s + 4t j + 2 - 6s + 4t k( ) 0 ( ) ( ) ( )

 



The Cartesian equation of the plane requires the normal vector (choose simple coefficients)
n ∝ a × b = -4 + 24 i + -12 - 8 j + 8 + 2 k = 20i - 20j + 10k( ) ( ) ( )

⟹ n = 4i - 4j + 2k

Calculating   gives:  r ⋅ n = r ⋅ n0 2x - 2y + z = 6

 
b. Find the point of intersection of the line given by , where r = 2i + 5k + t 2i - 4j - 3k( ) t ∈ R

with the plane given by .  2 2x − 2y + z = 6
marks
 

Substitute the parametric form of the line into the plane:
2 2 + 2t - 2 0 - 4t + 5 - 3t = 4 + 4t + 8t + 5 - 3t = 9 + 9t = 6( ) ( ) ( )

⟹ 9t = -3

⟹ t = -
1

3
Sub back into the equation for the line to get the point of intersection:

r = 2i + 5k - 2i - 4j - 3k = i + j + 6k ⟹  , , 6
1

3
( )

4

3

4

3

4

3

4

3

 

Question 14 (3 marks)

Find the angle between the plane given by  and the line given by2x + y + z = 7

, where .r = 11i + 4j + 3k + t i + 2j - k( ) t ∈ R
 
We need the complementary angle of the angle between the direction of the line and the normal to the plane.
The direction of the line is v = i + 2j - k

The normal to the plane is n = 2i + j + k
So the complementary angle is 

𝜃 = ⋅ = = =C arccos(v n) arccos
2 + 2 - 1

1 + 4 + 1 4 + 1 + 1
arccos

3

6

𝜋

3

and the angle between the plane and the line is - =
𝜋

2

𝜋

3

𝜋

6
 

Question 15 (5 marks)

a. Find the vector equation of the line through the points  and . 2 marksA 3, 1, −1( ) B 5, 2, −6( )
 

r t = r + tv = + t = + t =( ) 0 OA (BA)
3

1
-1

5 - 3

2 - 1
-6 + 1

3 + 2t
1 + t

-1 - 5t
In i-j-k notation, that's
r t = 3i + j - k + t 2i + j - 5k = 3 + 2t i + 1 + t  j - 1 + 5t k( ) ( ) ( ) ( ) ( )

Other choices of parametrisation are possible!
 
b. Find the sine of the angle that this line makes with the plane given by  3 marksx + 2y − z = 9
 



The angle the line makes to the normal of the plane is 
, where  and 𝜃 = ⋅cos( C) v n v = 2i + j - 5k n = i + 2j - k

The angle the line makes with the plane is 𝜃 = - 𝜃
𝜋

2
C

𝜃 = 𝜃 = ⋅ = = =sin( ) cos( C) v n
2 + 2 + 5

4 + 1 + 25 1 + 4 + 1

9

6 5

3

2 5
 

Question 16 (4 marks)

The position of a particle after  seconds is given by , where  t r = t i + 5tj + t - 16t k2 2 t ≥ 0

and components are measured in metres.
Find the time at which the minimum speed occurs and calculate the minimum speed. 
Give your answer in ms .−1

 

Speed: |v| = = 2ti + 5j + 2 t - 8 k = =| ␒r| | ( ) | 4t + 25 + 4 t - 82 ( )2 8t - 64t + 2812

Want |v| = 0 ⟺ |v| = 0   |v| ≠ 0  
d

dt

d

dt
2 ( )

So, , it is a minimum as  is the square root of a positive quadratic.|v| = 16t - 64 = 0 ⟹
d

dt
2 t = 4 v

[Could also complete the square to see , so min speed is at ]|v| = 8 t - 4 + 1532 ( )2 t = 4
 

When , we find the minimum speed:  mst = 4 |v| = = 3153 17 -1

 

Question 17 (3 marks)

Two planes have equations  and .x + y − z = 3 2x − y − 2z = 4

Given that the angle between the two planes is , find θ θsec( )
 
The angle between two planes is equal to the angle between their normal vectors, which are

 and  respectively.n = i + j - k1 n = 2i - j - 2k2

𝜃 = ⋅ = = =cos( ) n
1

n
2

2 - 1 + 2

1 + 1 + 1 4 + 1 + 4

3

3 9

1

3

So, 𝜃 =sec( ) 3
 

Question 18 (3 marks)

The position vectors  and  form two sides of a triangle.a = 2i - 4j + 2k b = i - 2j + 3k

Find the area of the triangle in the form , where .c d c, d ∈ N

 

Area of triangle = half the area of the parallelogram = a × b
1

2
| |

= -4 × 3 + 2 × 2 i + 2 × 1 - 2 × 3 j + -2 × 2 + 4 × 1 kArea
1

2
|( ) ( ) ( ) |

        = -8i - 4j + 0k = = 2 = 2
1

2
| |

1

2
8 + 42 2 4 + 1 5

 



Question 19 (4 marks)

A parallelogram, , has vertices at ,  and , where .OABC O 0,  0,  0( ) A 1,  2,  −1( ) C 3,  m,  1( ) m ∈ R

Find the value(s) of  if the area of the parallelogram is .m 4 5
 

= ⚔ = 2 × 1 + 1 × m i + -1 × 3 - 1 × 1 j + 1 × m - 2 × 3 karea OA OC ( ) ( ) ( )

       = 2 + m i - 4j + m - 6 k( ) ( )

       = 2 + m + 4 + m - 6( )2 2 ( )2

       = 2m - 8m + 562

 

Given   ⟹  = 4area 5 4 × 5 = 2m - 8m + 562 2

⟹ m - 4m - 12 = 02

⟹ m - 6 m + 2 = 0( )( )

So , m = 6 m = -2



Exam 2: Section A -- MCQs

Question 1  (D)

Consider the following statement. 
‘For all integers , if  is even, then  is even.’n n2 n

The contrapositive is...
 
In general, the contrapositive of  is P ⟹ Q ¬Q ⟹ ¬P
 
For all integers , if  is odd, then  is odd. n n n2

 
Note that some other options (A & E) are true statements, just not the contrapositive.
 

Question 2  (C)

Pseudocode and algorithms are new in the study design. However, this does not follow the pseudocode 
rules outlined a VCAA:specialistmathematics/Pages/PseudoCode.aspx or in 
VCAA:professionallearning/2023/MathematicsPseudocodePresentation.pdf
The use of declare and set ... to ...,, the repeat loop, the lack of bold keywords and most importantly the 
use of = instead of ← for assignment, all not part of the VCAA specified pseudocode. At least it has 
indentation...
 
I also don't understand why t1 and n are variables, or why have both f and t2 in the code when they serve 
the same purpose. The code is just the first order difference equation t = 2 + 2t ,  t = 3n+1 n 0

This code doesn't even pretend to be useful...
 
Here is the same code on Python Tutor implemented in Python - showing the line-by-line equivalent code
 
The procedure below has been written in pseudocode.

declare integer n

declare integer f

declare integer t1

declare integer t2

set f to 0 0

set t1 to 2 2

set t2 to 3 3

set n to 3

repeat n times

f = t1 + 2 × t2     2+6=8,  2+16=18,   2+36=38

t2 = f             8,     18,        38

print f         8       18,        38

end loop

The output of the pseudocode is a list of numbers. What is the final number?
 
38

 

Question 3  (E)

https://www.vcaa.vic.edu.au/curriculum/vce/vce-study-designs/specialistmathematics/Pages/PseudoCode.aspx
https://www.vcaa.vic.edu.au/Documents/vce/mathematics/professionallearning/2023/MathematicsPseudocodePresentation.pdf
https://pythontutor.com/visualize.html#code=%23%20Specialist%20Maths%202023%20Sample%20Questions%0A%23%20Exam%202,%20MCQ%202%0A%23%20I've%20included%20type%20hinting%20to%20match%20their%20'declare'%20statements!%0A%0A%23%20Python%20%20%20%20%20%20%20%20%20%20%20%20%23%20Pseudocode%0A%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%23%0Af%3A%20%20int%20%3D%200%20%20%20%20%20%20%20%20%20%23%20set%20f%20to%200%0At1%3A%20int%20%3D%202%20%20%20%20%20%20%20%20%20%23%20set%20t1%20to%202%0At2%3A%20int%20%3D%203%20%20%20%20%20%20%20%20%20%23%20set%20t2%20to%203%0An%3A%20%20int%20%3D%203%20%20%20%20%20%20%20%20%20%23%20set%20n%20to%203%0A%0Afor%20_%20in%20range%28n%29%3A%20%20%23%20repeat%20n%20times%0A%20%20%20%20f%20%3D%20t1%20%2B%202*t2%20%20%20%23%20f%20%3D%20t1%20%2B%202%20%C3%97%20t2%0A%20%20%20%20t2%20%3D%20f%20%20%20%20%20%20%20%20%20%20%23%20t2%20%3D%20f%0A%20%20%20%20print%28f%29%20%20%20%20%20%20%20%20%23%20print%20f%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20end%20loop&cumulative=false&curInstr=17&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


A vector perpendicular to both of the lines represented by  andr = 2i + 3j + t i + 2j - k1 ( )

 is given byr = 3i + j - 2k + t 2i + j - k2 ( )

 
It's just testing the determinant way of calculating the cross product of the direction vectors of the lines:

 --- the correct answer is En = i + 2j - k × 2i + j - k =( ) ( )

i j k

1 2 -1

2 1 -1

 

Question 4  (A)

Consider two points with coordinates  and .5,  −6,  4( ) −3,  −1,  −10( )
Which one of the following is the equation of the straight line that passes through these two points?
 
Parametric vector equation of a line: , we have choices in what to call  and  -- and more. r = r + tv0 r0 v
So there is no "the" equation...
 
Call the first point  and the second point .A B

Let's try the obvious choice: , r =0 OA v = AB

r = + t = + t
5
-6

4

-3 - 5
-1 + 6

-10 - 4

5
-6

4

-8
5

-14
nope, but note that only one option has the correct direction vector  up to sign & scale, which is option A, v

corresponding to the choice  and r =0 OB v = BA
 

Question 5  (B)

A plane is perpendicular to the vector  and passes through the point .n = i - j + 3k 3,  2,  −4( )
The Cartesian equation of this plane is
 
Cartesian equation:  -- option Br ⋅ n = r ⋅ n ⟹  x - y + 3z = 3 - 2 - 12 = - 110

 

Question 6  (D)

The shortest distance between the planes given by  and  is5x − 4y − 12z = 10 −15x + 12y + 36z = 20
 
These two planes are parallel, so the question is just looking at the distance between them in the direction 
of the normal. The planes are

Plane 1: ,5x − 4y − 12z = ⋅ = 10                ⟹ n ⋅ r = 10 = d
5
-4
-12

x
y
z

1

Plane 2: −15x + 12y + 36z = -3 ⋅ = 20     ⟹ n ⋅ r = - = d
5
-4

-12

x
y
z

20

3
2

where the normal vector (for both planes) is .n = 5i - 4j - 12k
 



Can just use the general formula: = = = =distance
d - d

|n|

2 1 10 - -20 / 3( )

5 + 4 + 122 2 2

50

3 185

10

3

5

37
 
If you don't know the formula, the easiest method (to derive it) is to take a point on each plane and construct 
the vector between them, then take the scalar resolute in the direction of the normal

A point on the first plane is  and on the second plane .u = 2,  0,  0( ) v = - , 0, 0
4

3

So the distance is v - u ⋅ = ⋅ =( ) n
10

3

5

5 + 4 + 122 2 2

10

3

5

37
 
Alternatively, choose a point on plane 2, then use the formula for distance between a point  and r = a, b, c2 ( )

a plane ,  distance , which matches up to sign.n ⋅ r = d1 = = =
n ⋅ r + d

|n|

2 20 -4 / 3 + 10( )

5 + 4 + 122 2 2

-50

3 185

 

Question 7  (A)

The time taken by a machine to make electronic components varies normally with a mean of 20 seconds and
a standard deviation of 2 seconds. After the machine is serviced, it is believed that the mean time taken has
been reduced to 18.5 seconds with the standard deviation remaining the same.
A statistical test is proposed to check whether there is any evidence of a 1.5 second reduction in the mean
time taken to make components. The test statistic will be the mean time taken to make a random sample of
16 such components. The type I error for the test will be α = 5% with a critical sample mean of 19.2 seconds.
The type II error (β) for the test is closest to
 
One-tailed hypothesis test with sample size , and significance level n = 16 𝛼 = 0.05

Null Hypothesis : H0 𝜇 = 20,  𝜎 = 2

Alternate Hypothesis : H1 𝜇 < 20,  𝜎 = 2

 gives the probability of Type I errors, which occur when  is true, but the sample mean falls 𝛼 = 0.05 H0

below the critical sample mean just by pure chance. 

To find the critical sample mean, solve   where , ⩽ | H = 𝛼Pr(X⏨ x⏨crit 0) ∼ N 𝜇 = 20,  𝜎 = =X⏨ X⏨

2

16

1

2

 trueH0 falseH0

𝜇 = 𝜇actual 𝜇 = 𝜇1

Type I error Type II error

x⏨critical



this [invNorm(0.05,20,0.5)] gives , matching the question's .≈ 19.178x⏨crit = 19.2x⏨crit

 
 is the expected rate of Type II errors given the suspected alternate population mean, which in this case is 𝛽  

 where where . 𝛽 = > | 𝜇 = 18.5Pr(X⏨ x⏨crit ) ∼ N 𝜇 = 18.5,  𝜎 =X⏨ X⏨
1

2

We calculate [normCdf(19.2,∞,18.5,0.5)]  𝛽 ≈ 0.080757



Exam 2: Section B -- Extended Response

Question 1 (10 marks)

Why is this question in here? What is the new content?
 

a.  Express  in the form , where 2 marksz :  |z| = z - 2 ,  z ∈ Ccis 𝜋

4
y = ax + b a, b ∈ R

This is the perpendicular bisector of the line segment between  and 0 2 = + icis 𝜋

4
2 2

So it has gradient  and goes through : -1 cis 𝜋

4
y - = - 1 x -

1

2

1

2

⟹ y = -1 x +( ) 2
 

Alternatively,  x + y = x - + y -  ⟹  0 = 4 - 2 x + y  ⟹ y = - x +2 2 2
2

2
2

2( ) 2

 
b. On the Argand diagram below, sketch and label  and sketch and labelA = z :  z = 4,  z ∈ C{ z⏨ }

. Label the axis intercepts of the graph of .  3 B = z :  |z| = z - 2 ,  z ∈ Ccis 𝜋

4
B

marks
 

 
c. On the Argand diagram in part b., shade the region defined by 

1 markz :  z = 4,  z ∈ C ∩ z :  z + z ⩾ ,  z ∈ C{ z⏨ } Re( ) Im( ) 2

Note that  is just the line from part a.z + z = x + y =Re( ) Im( ) 2
Area is shaded in purple.

 
d. Find the area of the shaded region in part c. 2 marks
 

From the green triangle above, see that the angle subtended by the chord B makes on A 

is .  So the area of the segment is 2𝛼 = 2 =arccos
1

2

2𝜋

3

A

2

B

A

2

1

,
1

2

1

2

B

2

𝛼



- = 2 - 2 = ≈ 2.45674sector triangle
1

2

2𝜋

3
( )2 1

2
2 sin

2𝜋

3
-

4𝜋

3
3

I didn't see this triangle earlier (thanks to MG for pointing it out in her solutions). 

So here are some other, definitely not 2 mark approaches!

We can find the intersection points

, sub in x + y = ⟹ x + 2xy + y = 22 2 2 x + y = 42 2
⟹ 4 + 2xy = 2 ⟹ xy = -1

⟹ x - = ⟹ x - x - 1 = 0 ⟹ x = = = x
1

x
2 2 2

±

2

2 2 + 4 1 ± 3

2
±

⟹ y = - × = =±
1 ±

2

3

1 ∓

1 ∓

3

3

1 ∓

2

2 3 1 ∓ 3

2

Then can integrate   - - x dx + - - - x dx ≈ 2.45674
2

∫
x-

4 - x2 2
2
∫

x+

4 - x2 2

(the exact result is horrible, but should be able to be simplified!)

 
Instead of the integration, use geometry. Leveraging the results above, find 

The complex form for the intersection points:   z = x + iy = 2 -   2± ± ± cis
𝜋

12
or cis

7𝜋

12

Note: can do this in one step using the CAS 

So the the angle subtended by the chord is .  Then can find the area of the segment.+ =
7𝜋

12

𝜋

12

2𝜋

3

Easier (?) way: the points of intersection satisfy |z| = 2 = z - 2cis
𝜋

4

⟹ z = 2 𝜃 ⟹ 𝜃 - = 1 ⟹  1 - 𝜃 - - -𝜃 + + 1 = 1cis cis cis
𝜋

4
cis

𝜋

4
cis

𝜋

4

⟹ 𝜃 - + -𝜃 + = 1cis
𝜋

4
cis

𝜋

4

, then can find area of the segment again.⟹ 2 𝜃 - = 1 ⟹ 𝜃 - = ±  ⟹ 𝜃 = ,  -  cos
𝜋

4

𝜋

4

𝜋

3

7𝜋

12

𝜋

12

e. The elements of  provide two of thez :  z = 4,  z ∈ C ∩ z :  |z| = z - 2 ,  z ∈ C{ z⏨ } cis 𝜋

4

cube roots of , where .w w ∈ C

Write down all three cube roots of w in the form  and find  in the form ,r θcis( ) w a + ib
where . 2 marksa, b ∈ R

 
Why did they switch the description of  back to its original form again?B

 

The two intersections labelled  above are  radians apart, so are indeed the cube roots of some .z±

2𝜋

3
w

Just cube any one of them to get w = 2 - = 8 - = 8 × = 4  1 - i  cis
𝜋

12

3

cis
𝜋

4

1 - i

2
2 ( )

So, w = 4 - 4 i2 2



de Moivre's theorem says that the cube roots are

z = 2 - + ,  n = 0, 1, 2cis
𝜋

12

2𝜋n

3

z = 2 - ,  2 ,  2 = 2cis
𝜋

12
cis

7𝜋

12
cis

5𝜋

4
cis

-3𝜋

4

  (don't req this last line)z = + i , + i ,  - 1 + i2
1 +

2

3 1 -
2

3
2

1 -
2

3 1 +

2

3
2( )

Which is also what the CAS says! cSolve(z^3=4*√2-4*√2*i,z)
 

Question 2 (10 marks)

logistic equation is new to the study design
 
In a certain region, 500 rare butterflies are released to maintain the species.
It is believed that the region can support a maximum of 30 000 such butterflies.
The butterfly population, P, t years after release can be modelled by the logistic differential

equation , where  is the growth rate of the population.= r P 1 -
dP

dt

P

30000
r

a. Use an integration technique and partial fractions to solve the differential equation above to
find  in terms of  and . 3 marksP r t

 
It specifies we have to use partial fractions, as though that is also not an integration technique. 
I guess it prevents us from completing the square and using arctan...

 

r dt = = + dP∫ ∫ dP

P 1 -
P

30000

∫ 1

P

1

30000 - P

 ⟹  rt = + C ,loge

P

30000 - P
loge( ) C = constant of integration

When t = 0,  P = 500 ⟹  0 = + C = ⟹ C = 59loge

500

30000 - 500
loge( ) loge

C

59

⟹ e =  ⟹ 30000e = 59P + Pert 59P

30000 - P
rt rt

⟹ P = =
30000e

59 + e

rt

rt

30000

1 + 59e-rt

 
b. Given that after 10 years there are 1930 butterflies in the population, find the value of  r

correct to two decimal places. 2 marks
 

r = = ≈ 0.14
1

t
loge

59P

30000 - P

1

10
loge

59 × 1930

30000 - 1930

 
c. What is the initial rate of increase of the population, correct to one decimal place? 1 mark



Initially , so just sub into the original DE,  P 0 = 500( ) = r P 1 -
dP

dt

P

30000

P' 0 = 0.1400356 × 500 1 - ≈ 68.8508 ≈ 68.9( )
500

30000

Note, if you use , then you get    �r = 0.14 P' 0 ≈ 68.83 ≈ 68.8( )

d. After how many years will the population reach 10 000 butterflies? Give your answer 
correct to one decimal place. 1 mark

 

P t = 10000 ⟹  t = ≈ 24.2( )
29.5

r

loge( )

 
e. Sketch the graph of  versus  on the axes below, showing the value of the vertical intercept.P t

Label the point of fastest population growth as a coordinate pair , with  labelled correctt, P( ) t
to two decimal places, and label the asymptote with its equation. 3 marks

Question 3 (10 marks)

Parametric and vector equations of planes are new to the study design
 
A plane, , is described by the parametric equations𝛱1

x = 1 + 2s + 3t
y = −2 − s − 2t
z =  2  − s + t

A second plane, , contains the point  and is parallel to the plane  .𝛱2 P 1, 0, 3( ) 𝛱1

 
a. Find a vector equation of the plane  in the form 2 marks𝛱1 r = a + s b + t c
 

Can just read it directly off the question (why is it two marks?)

r s, t = + s + t( )
1
-2
2

2
-1
-1

3
-2
1

10 20 30 40 50 600

P = 30000

population, P

0,  500( )

10000

20000

30000

29.13,  15000( )

time (year



 
b. Hence, find a Cartesian equation of the plane  . 2 marks𝛱1

 

We need a normal to the plane, go with b × c = - × = - = -
2

-1
-1

3

-2
1

-1 - 2

-3 - 2
-4 + 3

-3

-5
-1

Actually,   is more convenient!n = c × b = - b × c =
3

5
1

r ⋅ n = a + sb + tc ⋅ n = a ⋅ n( )

3x + 5y + z = 3 - 10 + 2 = -5 𝛱 :  1 3x + 5y + z = -5

 
c. Find a Cartesian equation of the plane . 1 mark𝛱2

 
It's parallel, so 3x + 5y + z = d
Substitute the point: 3 × 1 + 5 × 0 + 1 × 3 = 6

𝛱 :  2 3x + 5y + z = 6

 
d. i.  Find the shortest distance between the planes  and  . 2 marks𝛱1 𝛱2

 

=distance
d - d

|n|

2 1
= = =

6 + 5

3 + 5 + 12 2 2

11

35

11

35

35

 
Check: Choose a point on each plane, construct the vector between them and project in the direction of 

n

a = ,  = p = ,  n = ,    a - p ⋅ =   ✓
1
-2

2

OP
1
0

3

3
5

1

( ) n
-11

35

35

 
ii.  Hence, find the coordinates of point , which is the reflection of point  in the plane  ,Q P 𝛱1

    as shown in the diagram above (not shown). 3 marks
 

To get to , start at  (on plane ) then travel twice the distance from  to Q P 𝛱2 P 𝛱1

, so the coordinates are = p + 2 a - p ⋅  = - i - j + kOQ (( ) n) n
31

35

22

7

83

35
- , - ,

31

35

22

7

83

35
This seems messy... 

 

Question 4 (10 marks)

a. Find the shortest distance between the two parallel lines given by
, where ,  andr t = 4i + 2j + k + t -i + j + 3k( ) ( ) t ∈ R

, where . 3 marksr s = 5i + 4j - 2k + s -i + j + 3k( ) ( ) s ∈ R
 

Parallel lines, along vector  v = - i + j + 3k
just choose a point on each line and take the perpendicular projection....
Choose  points, vector between them is s = t = 0 d = 5i + 4j - 2k - 4i + 2j + k = i + 2j - 3k( ) ( )



d ⋅  = -i + j + 3k( v) v
i + 2j - 3k ⋅ -i + j + 3k

-i + j + 3k ⋅ -i + j + 3k

( ) ( )

( ) ( )
( )

              = -i + j + 3k = -i + j + 3k
-1 + 2 - 9

1 + 1 + 9
( )

-8

11
( )

d - d ⋅  = i + 2j - 3k + -i + j + 3k = i + j - k( v) v
8

11
( )

3

11

30

11

9

11

= i + j - = = = 3distance
3

11

30

11

9

11

1

11
9 + 900 + 81

11

990 10

11
 

In general, the distance between two parallel lines is
,   r = a + t v,  r = b + s v1 2 r , r = b - a - b - a ⋅   dist( 1 2) |( ) (( ) v ) v|

Alternatively: note that  is the area of the parallelogram b - a ×|( ) v|
with "base" length one and height equal to the perpendicular distance.
So, 

 = i + 2j - 3k × -i + j + 3k = 6 + 3 i + 3 - 3 j + 1 + 2 k = = 3  ✓dist ( ) ( )
1

11

1

11
|( ) ( ) ( ) |

90

11

10

11

This is not that much of a surprise, as in general we always have  d - d ⋅ = |d × || ( v)v| v

,   d - d ⋅ = |d| - d ⋅| ( v)v| 2 2 ( v)2 |d × | = d ⋅ d ⋅ - d ⋅ d ⋅ = |d| - d ⋅v 2 ( )(v v) ( v)( v) 2 ( v)2

 
b. Given that the lines with equations , where , r t = i - 3j + 6k + t 3i + 5j - ak1( ) ( ) t ∈ R

and , where , intersect, r s = - 6i + 2j + k + s 4i - 10j + 6k2( ) ( ) s ∈ R
find the value of  and the point of intersection. 4 marksa

 
Setting  gives three equations for three unknowns ⟹ r t = r s1( ) 2( ) s = 1,  t = -1,  a = 1

So the point of intersection is -2,  -8,  7( )

An easy 4 CAS marks...  
Maybe worth 4 if solving by hand. Solve first two for ,  and then sub to find  from the third. s t a

 
Alternatively: Minimum distance between skew lines occurs between two points  and  s.t. P1 P2

 is at right angles to both lines.  Let , then P P1 2 r = u + t v ,  r = u + s v1 1 1 2 2 2 ∥ v × vP P1 2 1 2

and so  where .= P P = ⋅distance
1,2 1 2 P P1 2 n n = v × v1 2

Note that  for some  and similarly  for some .= r tOP1 1( *) t* = r sOP2 2( *) s*

Then  = - ⋅ = u + s  v - u - t  v ⋅ = u - u ⋅distance OP2 OP1 n ( 2 * 2 1 * 1) n ( 2 1) n

If the two lines intersect, then their distance is zero: u - u ⋅ = u - u ⋅ n = 0( 2 1) n ( 2 1)

Let's apply that to our question. n = 3i + 5j - ak × 4i - 10j + 6k = 30 - 10a,  -4a - 18,  -50( ) ( ) ( )

a

b

r = a + t v1

 r = b + s v2

d = d ⋅   
∥v

( v ) v

d = b - ad
⟂
v



u - u ⋅ n = 50 a - 1  ⟹  a = 1( 2 1) ( )
Can then find the intersection as normal.

 
c. The line with equation , where , is parallel to r t = i + j - 5k + t 4i + bj + 2k( ) ( ) t, b, ∈ R

the plane with equation .2x − 3y − z = 2

Find the value of  and the shortest distance of the line from the plane. 3 marksb
 

If the line is parallel to the plane, then it is perpendicular to the plane's normal: n = 2i - 3j - k

0 = 4i + bj + 2k ⋅ 2i - 3j - k = 8 - 3b - 2 = 6 - 3b ⟹( ) ( ) b = 2

The distance is then the usual projection of the displacement vector of any point on the line 
to any point on the plane:

 units= i + j - 5k - i + 0j + 0k ⋅ = j - 5k ⋅ = =distance (( ) ( )) n ( )
2i - 3j - k( )

14

-3 + 5

14

2

14
 
 

Question 5 (10 marks)

The whole shebang - cross products, planes, lines, distances... 
 
a. Given the points ,  and A 1, 0, 2( ) B 2, 3, 0( ) C 1, 2, 1( )

i. find the vector 1 mark×AB AC

= 2 - 1 i + 3 - 0 j + 0 - 2 k = i + 3j - 2kAB ( ) ( ) ( )

= 1 - 1 i + 2 - 0 j + 1 - 2 k = 0i + 2j - kAC ( ) ( ) ( )

× = i + 3j - 2k × 2j - k = i + j + 2kAB AC ( ) ( )
 

ii. show that the Cartesian equation of the plane , containing the points ,  and , is𝛱1 A B C
. 1 markx + y + 2z = 5

 

Equation of the plane: . Choose r ⋅ n = r ⋅ n0 n = × ,  r =AB AC 0 OA

⟹ ⋅ = ⋅ ⟹ x + y + 2z = 5
x
y
z

1
1
2

1
0
2

1
1
2

 
b. A second plane,  , has the Cartesian equation .𝛱2 x − y − z = 0

 is the line of intersection of the planes  and  .L 𝛱1 𝛱2

i. Find the coordinates of the point , where  crosses the -  plane. 1 markP L y z
 

x = 0 ⟹  ⟹  ⟹ P = 0, -5, 5
y + 2z = 5
y + z = 0

z = 5
y = -5

( )

 
ii. Hence, find the vector equation of the line . 2 marksL

 
The line is perpendicular to normal vectors of both planes, so it is parallel to 



  v = × = = i + 3j - 2k
1
-1

-1

1
1

2

1
3

-2
and it goes through the point , so its equation isP

L :  r t = + t v( ) OP
           = 0i - 5j + 5k + t i + 3j - 2k( )

           = t i + 3t - 5 j + 5 - 2t k( ) ( )
 

iii. Find the distance from the point  to the plane  . 2 marksA 𝛱2

 
Choose the origin as a point on the plane :  𝛱2 O 0,  0,  0( )

Then a vector from the plane to  is A  = i + 2kOA
A normal vector for  is 𝛱2 n = i - j - k2

Then A, 𝛱 = ⋅  =dist( 2) |(OA n2) n2 |
1

3
 

iv. Find the distance from the point  to the line . 3 marksA L
 

A, L = r t -dist( ) min(| ( ) OA|)

r t - = 14t - 44t + 35 = 14 t - +| ( ) OA| 2 2 11

7

2
3

7

So the minimum value is  and it occurs when .
3

7
t =

11

7

 

Alternatively: Choose a point on the line; , then the distance isr 0 =( ) OP

× = - × = × = =     ✓|AP v|
1

14

0
-5

5

1
0

2

1
3

2

1

14

-1
-5

3

1
3

2

1

14

1
1

2

3

7

This can also be obtained as the length of the perpendicular projection .- ⋅  |AP (AP v) v|
 
 

Question 6 (11 marks)

The position vector , from an origin , of a sparrow  seconds after being sighted is modelled r tS( ) O t

by , where  is a unit vector in the forward r t = 23t i + 5t j + 4 + 4 k,  t ⩾ 0S( ) 2 sin
𝜋t

2
2 i

direction,  is a unit vector to the left and  is a unit vector vertically up. Displacement componentsj k
are measured in centimetres.
 
a. Find the value of t when the sparrow first lands on the ground. 2 marks
 

0 = 4 + 4 ⟹ = - 1 ⟹ = + 2n𝜋,  n ∈ 0, 1, 2,  ...2 sin
𝜋t

2
2 sin

𝜋t

2

𝜋t

2

3𝜋

2
{ }

So the sparrow first lands on the ground when 3 seconds.
 



b. Find the distance of the sparrow from O when it first lands. Give your answer correct to 
one decimal place. 2 marks

 

 cm|r 2 | = = 3 = 3 ≈ 70.6S( ) 3 × 23 + 3 × 5 + 0( )2 ( )2 2 23 + 52 2 554

 
c. Find the maximum flight speed, in centimetres per second, of the sparrow. Give your 

answer correct to one decimal place. 2 marks
 

v t = r t = 23 i + 5 j + 2𝜋 kS( )
d

dt
S( ) 2 cos

𝜋t

2

This has maximum magnitude when 𝜋t / 2 = ± 1cos( )

max speed   = |23 i + 5 j + 2𝜋  k| ≈ 25.1586 ≈ 25.2  2 cm s-1
 

(Could of course, also maximise  using calculus)v t| S( )|
 
A second bird, a miner, flies such that its velocity vector , relative to the same origin , isv tM( ) O

modelled by , where velocity components are measured inv t = 6i + j + k,   t ⩾ 0M( )
𝜋

6
cos

𝜋t

6

centimetres per second. 
Note: Indian Myna and Noisy Miner birds are not related (https://austraflora.com/2016/05/19/indian-myna-noisy-miner/)

 

d. Given that the miner has an initial position vector of , show that its position10 i + 4 j + 4  k2

vector at time  seconds is given by 2 markst r t = 6t + 10 i + t + 4 j + + 4  kM( ) ( ) ( ) sin
𝜋t

6
2

 
Fairly straight forward integration: 

r t = r 0 + v 𝜏 d𝜏 = 10 i + 4 j + 4  k + 6𝜏i + 𝜏j + kM( ) M( )
t

0
∫ M( ) 2 sin

𝜋𝜏

6

t

0

         = 10 + 6t i + 4 + t j + 4 +  k( ) ( ) 2 sin
𝜋t

6

 
e. The sparrow and the miner are at the same position at different times.

Find the coordinates of this position and the times at which each bird is at this position. 3 marks
 

Need to find  such that    s, t ⩾ 0 r s = r tS( ) M( )
can just solve the vector equation directly in the CAS, but if you want to do it by hand:

⟹

23s = 10 + 6t               1

5s = 4 + t               2

4 + 4 = 4 +2 sin
𝜋s

2
2 2 sin

𝜋t

6
              3

6 - ⟹ 7s = 14 ⟹  s = 22 1

Sub into  ⟹  t = 5 2 - 4 = 62 ( )

Check it's actually a solution by substituting into :  3 4 𝜋 = 𝜋 = 0  ✓2 sin( ) sin( )
 

So, at time = 2 for the sparrow and 6 for the miner, the birds are at the same position:



r 2 = r 6 = 46i + 10j + 4  k ∼ 46,  10,  4S( ) M( ) 2 2




