The Mathematical Association of Victoria

SPECIALIST MATHEMATICS 2023 Trial Written Examination 2 - SOLUTIONS

SECTION A – Multiple-choice questions

ANSWERS

 B | D | E | A | B | A | B | C | C | A

SOLUTIONS

Question 1 Answer is A

If $x \geq \frac{1}{2}$ 2 $x \ge \frac{1}{2}$ then $\frac{|2x-1|}{1} = \frac{2x-1}{1} = 2 + \frac{1}{2}$ 1 $x-1$ $x-1$ $\begin{vmatrix} x-1 & 2x \end{vmatrix}$ $\frac{|2x-1|}{x-1} = \frac{2x-1}{x-1} = 2 + \frac{1}{x-1}$ If $x < \frac{1}{2}$ 2 $x < \frac{1}{2}$ then $\frac{|2x-1|}{1} = \frac{1-2x}{1} = -2 - \frac{1}{2}$ 1 $x-1$ $x-1$ $x-1$ 1 - 2*x* $\frac{|2x-1|}{x-1} = \frac{1-2x}{x-1} = -2 - \frac{1}{x-1}$

The graph of $2x - 1$ $y = \frac{y}{x-1}$ $=\frac{|2x-1|}{x-1}$ has straight line asymptotes $x=1$, $y=2$ and $y=-2$.

Question 2 Answer is D

Note that

$$
-1 \le x^2 \le 1
$$

\n
$$
\Rightarrow 0 \le x^2 \le 2
$$

\n
$$
\Rightarrow -\sqrt{2} \le x \le \sqrt{2}
$$

When $x = 0$, $x^2 - 1 = -1$ and $\arctan(x^2 - 1) + \frac{\pi}{2} = 0$ 2 $(x^2-1)+\frac{\pi}{2}=0$. Therefore, the implied domain of $(x^2 - 1)$ 1 $\arctan\left(x^2-1\right)$ 2 $f(x)$ *x* $f(x) = \frac{1}{\arctan(x^2-1)+\frac{\pi}{2}}$ $=\frac{1}{\sqrt{2}} \int \frac{1}{\pi} \sin \left[-\sqrt{2},0 \right] \cup \left(0,\sqrt{2} \right]$

Question 3 Answer is B

Using a double angle formula,

$$
\tan(2x) = -1
$$

$$
\Rightarrow \frac{2\tan(x)}{1-\tan^2(x)} = -1
$$

Solving for $tan(x)$ gives $tan(x) = 1 \pm \sqrt{2}$. But $x \in \left\lfloor \frac{\pi}{4}, \right\rfloor$ 4^{\degree} 2 $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ and so tan(*x*) > 0. Therefore, $tan(x) = 1 + \sqrt{2}$.

Question 4 Answer is B

The converse of a statement $P \Rightarrow Q$ is $Q \Rightarrow P$. Therefore, the converse of the statement

If n is divisible by 4 then n is divisible by 2

is

If n is divisible by 2 then n is divisible by 4

Question 5 Answer is A

In the inductive step, we assume that

$$
1^2 + 2^2 + 3^2 + \ldots + k^2 > \frac{k^3}{3}
$$

and deduce that

$$
1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 > \frac{(k+1)^3}{3}
$$

Question 6 Answer is D

Graphically: The gradient of the line segment joining the points (-4,0) and (0,2) is $\frac{1}{2}$ 2 . The gradient of the line perpendicular to this line segment is −2 .

The midpoint of the line segment joining $(-4,0)$ and $(0,2)$ is $(-2,1)$. Therefore, the equation of the perpendicular bisector of the line segment joining $(-4,0)$ and $(0,2)$ is

$$
y = -2(x+2) + 1
$$

$$
= -2x - 3
$$

It is often useful to draw a quick diagram:

Algebraically: Let $z = x + yi$. Then

$$
|z+4| = |z-2i|
$$

\n
$$
\Rightarrow |(x+4)+yi| = |x+(y-2)i|
$$

\n
$$
\Rightarrow \sqrt{(x+4)^2 + y^2} = \sqrt{x^2 + (y-2)^2}
$$

\n
$$
\Rightarrow x^2 + 8x + 16 + y^2 = x^2 + y^2 - 4y + 4
$$

\n
$$
\Rightarrow 4y = -8x - 12
$$

\n
$$
\Rightarrow y = -2x - 3
$$

Question 7 Answer is C

Let $z = x + iy$. Then

$$
(z+4i)(\overline{z}-4i) = 16
$$

\n
$$
\Rightarrow (x+(y+4)i)(x-(y+4)i) = 16
$$

\n
$$
\Rightarrow x^2 + (y+4)^2 = 16
$$

The set of points $(z + 4i)(\overline{z} - 4i) = 16$ is a circle of radius 4 in the complex plane, centered at $(0, -4)$.

Question 8 Answer is C

The tangent to the solution curve at $(2,0)$ must pass through the point $(0,4)$ (for example). Only option **C** has this property:

Question 9 Answer is D

Use a table to keep track of the variables:

Note that the pseudocode is describing an application of Euler's method to solve the differential equation $\frac{dy}{dx} = \frac{u}{y^2 + 1}$ $\frac{dy}{dx} = \frac{x}{y^2 + 1}$, $y(1) = 2.5$ with a step size of 0.1.

The result could be found using CAS:

The output when $i=2$ is $(1.2, 2.5288)$

Question 10 Answer is E

From the vector equation of the line we have

 $x = 4 + 2t$ $y = -1 - 2t$ $z = 5 + 3t$

Substituting these equations into the Cartesian equation of the plane gives

$$
2(4+2t)-3(-1-2t)+4(5+3t)=20.
$$

Solving this equation for *t* gives $t = -\frac{1}{2}$ 2 $t = -\frac{1}{2}$.

Then,
$$
\underline{r}\left(-\frac{1}{2}\right) = 3\underline{i} + \frac{7}{2}\underline{k}
$$
 and the point of intersection of the line and the plane is $\left(3, 0, \frac{7}{2}\right)$.

Question 11 Answer is B

The parametric equations of the line are

$$
x = 1+3t
$$

$$
y = -2+5t
$$

$$
z = -1-2t
$$

and so a vector normal (perpendicular) to the plane is $p = 3i + 5j - 2k$.

The equation of the plane is $3x+5y-2z=d$. To find *d*, substitute the point *P*(1,1, -3) into the plane equation:

$$
3(1) + 5(1) - 2(-3) = 14.
$$

The equation of the plane is $3x+5y-2z=14$.

Question 12 Answer is D

The area can be found using the cross product:

$$
\frac{1}{2} \left| \overrightarrow{OA} \times \overrightarrow{OB} \right| = \frac{13}{\sqrt{2}}
$$

Use CAS to find this:

Question 13 Answer is E

The asymptote is $P = 500$ and so $a = 500$. Furthermore, $P(0) = \frac{500}{1} = 50$ 1 $P(0) = \frac{560}{1+b} = 50$ and so $b = 9$. The rate of change of *P* is greatest when $P = 250$ (halfway between $P = 0$ and $P = 500$). Solving $\frac{500}{1}$ 20 $\frac{500}{1}$ = 250 $\frac{566}{1+9e^{-\frac{1}{20}t}} =$ + gives $t = 20 \log_e(9)$.

Alternatively, solve $\frac{d^2 P}{dt^2} = 0$ to obtain the same result.

Question 14 Answer is A

This can be done by hand:

$$
\frac{dx}{dt} = 2\sqrt{2}\sin(t) + 2\sqrt{2}t\cos(t)
$$

$$
\frac{dy}{dt} = 2\sqrt{2}\cos(t) - 2\sqrt{2}t\sin(t)
$$

Then

$$
\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 8\sin^2(t) + 16t\sin(t)\cos(t) + 8t^2\cos^2(t) \n+ 8\cos^2(t) - 16t\sin(t)\cos(t) + 8t^2\sin^2(t) \n= 8\left(\sin^2(t) + \cos^2(t)\right) + 8t^2\left(\sin^2(t) + \cos^2(t)\right) \n= 8 + 8t^2
$$

From the formula sheet, the surface area generated by rotating the graph about the *x* -axis is

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 2\pi \cdot 2\sqrt{2}t \cos(t) \sqrt{8+8t^2} \, dt = 16\pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} t \sqrt{1+t^2} \cos(t) \, dt
$$

The integrand can also be found using CAS:

Question 15 Answer is B

Let
$$
u = x^5
$$
 and $\frac{dv}{dx} = \sin(3x)$
Then $\frac{du}{dx} = 5x^4$ and $v = -\frac{1}{3}\cos(3x)$.

Then by integration by parts:

$$
\int x^5 \sin(3x) dx = -\frac{1}{3}x^5 \cos(3x) + \frac{5}{3} \int x^4 \cos(3x) dx
$$

Question 16 Answer is A

Use the acceleration equivalent formula $\frac{d}{\overline{I}}\left(\frac{1}{2}v^2\right)$ 2 $\frac{d}{dx} \left(\frac{1}{2} v \right)$ $rac{d}{dx}$ $\left(\frac{1}{2}v^2\right)$:

$$
\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \sqrt{x}
$$

$$
\Rightarrow \frac{1}{v^2} = \int \sqrt{x} \, dx
$$

$$
= \frac{2}{3} x^{\frac{3}{2}} + c
$$

When $x = 1$, $v = 2$ and so

$$
2 = \frac{2}{3} + c \Rightarrow c = 2 - \frac{2}{3} = \frac{4}{3}
$$

When $x=16$:

$$
\frac{1}{2}v^2 = \frac{2}{3}(16)^{\frac{3}{2}} + \frac{4}{3}
$$

$$
= \frac{2}{3} \times 4^3 + \frac{4}{3}
$$

$$
= \frac{132}{3} = 44
$$

Therefore $v^2 = 88$ and the speed of the body is $|v| = \sqrt{88} = 2\sqrt{22}$.

Question 17 Answer is B

Differentiate to find

$$
\dot{\underline{r}}(t) = 6t\underline{i} + 2e^{2t}\underline{j} - 3\underline{k}
$$

$$
\Rightarrow \dot{\underline{r}}(0) = 2\underline{j} - 3\underline{k}
$$

and so $|\dot{y}(0)| = \sqrt{4 + 9} = \sqrt{13}$

Question 18 Answer is C

The sample mean is

$$
\overline{x} = \frac{723.54 + 712.46}{2} = 718
$$

For a 95% confidence interval, $z \approx 1.96$ and so

$$
718 + 1.96 \times \frac{20}{\sqrt{n}} = 723.54
$$

This gives $n = 50$ (correct to the nearest integer).

Question 19 Answer is C

For a two-sided test at the 5% significance level, the area in each of the tails is 0.025:

Therefore

$$
Pr(\overline{X} < 655.37) = 0.975
$$
\n
$$
\Rightarrow Pr\left(Z < \frac{655.37 - 650}{\frac{\sigma}{\sqrt{30}}}\right) = 0.975
$$
\n
$$
\Rightarrow \frac{655.37 - 650}{\frac{\sigma}{\sqrt{30}}} = 1.96
$$
\n
$$
\Rightarrow \sigma \approx 15
$$

Question 20 Answer is A

Let $A_i \sim N(80,5^2)$, $i = 1,2,3$ and $M_j \sim N(60,8^2)$, $j = 1,2,3,4$ be the random variables representing the masses of apples and mandarins respectively.

Let *X* be the normal random variable that represents the masses of four mandarins minus the masses of three apples:

$$
X = M_1 + M_2 + M_3 + M_4 - (A_1 + A_2 + A_3).
$$

Then

 $sd(X) = \sqrt{331}$ $E(X) = 4 \times 60 - 3 \times 80 = 0$ $Var(X) = 4 \times 64 + 3 \times 25 = 331$

SECTION B

Question 1

a.

The other solutions are $z = -4$ and $z = -3 - \sqrt{3}i$. Use the CAS command cSolve:

$$
[A1]
$$

b.

As $z = -3 + \sqrt{3}i$ and $z = -4$ all lie on the circumference of a circle $|z - a| = r$ where $a \in R$, then

$$
\left| -3 + \sqrt{3}i - a \right| = r
$$
\n
$$
\left| -4 - a \right| = r
$$
\n[M1]

and so $(3+a)^2 + 3 = r^2$ $(4+a)^2 = r^2$

Solving gives $a = -2$ and $r = 2$. **[A1]**

c.

The circle is shown below:

d. $Arg(z) = \frac{5\pi}{6}$. The ray is shown on the diagram from **c.** below:

e. The area required is shown on the diagram below:

[A1]

The area can be found (for example) by considering the area of the triangle with vertices at the origin and at the points $z = -4$ and $z = -3 + \sqrt{3}i$, plus the area of the minor segment as shown above.

$$
A = \frac{1}{2} \cdot 4 \cdot \sqrt{3} + \frac{1}{2} \cdot 2^{2} \left(\frac{\pi}{3} - \sin\left(\frac{\pi}{3}\right) \right)
$$

= $2\sqrt{3} + \frac{2\pi}{3} - 2 \cdot \frac{\sqrt{3}}{2}$
= $\frac{2\pi}{3} + \sqrt{3}$

[M1 – formula] [A1]

Question 2

a.

The line l_1 has the same direction as the normal vector of the plane Π_1 and passes through the point $A(3,2,-1)$. Therefore a vector equation of the line is

$$
\underline{\mathbf{r}}(t) = 3\underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}} + (3\underline{\mathbf{i}} - 3\underline{\mathbf{j}} + 2\underline{\mathbf{k}})t
$$
 [A1]

b.

We have

$$
\overrightarrow{DE} = -5\underline{i} + 4\underline{j} - 2\underline{k}
$$

$$
\overrightarrow{DF} = 5\underline{i} + 2\underline{j} + 4\underline{k}
$$

 \sim \approx \sim

and so

$$
\overrightarrow{DE} \times \overrightarrow{DF} = 20\underline{i} + 10\underline{j} - 30\underline{k} = 10(2\underline{i} + \underline{j} - 3\underline{k}).
$$
 [M1]

A vector normal to the plane Π_2 is $2i + j - 3k$ \sim $\frac{3}{2}$ \sim and a Cartesian equation of the plane is $2x + y - 3z = d$.

Substituting $D(-2, -1, 1)$ (for example) gives $2x + y - 3z = -8$.

Therefore, a Cartesian equation for plane Π_2 is $2x + y - 3z = -8$. (Other equivalent answers are acceptable) **[A1]**

c. i.

Substitute the point $P(4, -1, 5)$ into the Cartesian equation for the planes Π_1 and Π_2 and confirm that the equation is satisfied:

$$
3(4) - 3(-1) + 2(5) = 25 \text{ and } 2(4) + (-1) - 3(5) = -8
$$
 [A1^{*} - shown]

c. ii.

The line contained in both Π_1 and Π_2 is perpendicular to the normal vectors to each of the planes. That is, the line l_2 is parallel to

The line passes through the point $(4, -1, 5)$ and so a Cartesian equation for the line is

$$
\frac{x-4}{7} = \frac{y+1}{13} = \frac{z-5}{9}
$$
 [A1]

d.

Let n $\tilde{ }$ be a vector perpendicular to both lines:

$$
\mathbf{u} = (7\mathbf{i} + 13\mathbf{j} + 9\mathbf{k}) \times (3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k})
$$

= 53\mathbf{i} + 13\mathbf{j} - 60\mathbf{k} (M1)

$$
A(3,2,-1)
$$
 lies on l_1 and $P(4,-1,5)$ lies on l_2 . Then $\overrightarrow{AP} = \underline{i} - 3\underline{j} + 6\underline{k}$. [H1]

 \sim $\frac{1}{2}$ \sim The distance between the lines is $|\vec{AP} \cdot \hat{n}| = 4.27$ $|\hat{n}| = 4.27$ [A1]

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n\text{c} & \text{Edi } \text{Action Interactive} & \times & \text{Ric} \\
\hline\n\text{c} & \text{F1} & \text{F2} & \text{F3} & \text{F4} & \text{F6} \\
\hline\n\text{c} & \text{F1} & \text{F2} & \text{F1} & \text{F1} \\
\hline\n\text{c} & \text{F3} & \text{F4} & \text{F5} & \text{F4} \\
\hline\n\text{c} & \text{F1} & \text{F2} & \text{F1} & \text{F1} \\
\hline\n\text{d} & \text{C1} & \text{D} & \text{D} & \text{D1} \\
\hline\n\text{d} & \text{C1} & \text{D} & \text{D1} & \text{D2} \\
\hline\n\text{d} & \text{C1} & \text{D} & \text{D1} & \text{D2} \\
\hline\n\text{d} & \text{C1} & \text{D1} & \text{D2} & \text{D2} & \text{D1} \\
\hline\n\text{d} & \text{C1} & \text{D1} & \text{D2} & \text{D2} & \text{D2} \\
\hline\n\text{d} & \text{C1} & \text{D1} & \text{D2} & \text{D2} & \text{D2} \\
\hline\n\text{d} & \text{D1} & \text{D2} & \text{D2} & \text{D2} & \text{D2} \\
\hline\n\text{d} & \text{D2} & \text{D1} & \text{D2} & \text{D2} & \text{D2} \\
\hline\n\text{d} & \text{D1} & \text{D2} & \text{D2} & \text{D2} & \text{D2} \\
\hline\n\text{d} & \text{D2} & \text{D1} & \text{D2} & \text{D2} & \text{D2} \\
\hline\n\text{d} & \text{D1} & \text{D2} & \text{D2} & \text{F1} & \text{D3} & \text{F1} \\
\hline\n\text{d} & \text{D1} & \text{D2} & \text{F2} & \text{F3} & \text{F2} & \text{F3} \\
\hline\n\text{d} & \text{D1} & \text{
$$

Question 3

a.

The terminal velocity occurs when the acceleration is zero. Therefore

$$
g - \frac{5}{4}v = 0
$$

\n
$$
\Rightarrow v = \frac{4g}{5} = 7.84
$$
 [A1]

b.

Since $\frac{dv}{d} = g - \frac{5}{4}$ 4 $\frac{dv}{dt} = g - \frac{5}{4}v$,

$$
\int \frac{dv}{g - \frac{5}{4}v} = \int dt
$$

$$
\Rightarrow -\frac{4}{5} \log_e \left(g - \frac{5}{4} v \right) = t + c
$$

$$
\Rightarrow g - \frac{5}{4} v = A e^{-\frac{5}{4}t}
$$

When $t = 0$, $v = 0$ and so $A = g$. Therefore

$$
\frac{5}{4}v = g\left(1 - e^{-\frac{5}{4}t}\right)
$$

$$
\Rightarrow v = \frac{4g}{5}\left(1 - e^{-\frac{5}{4}t}\right)
$$

[M1]

c.

[A1]

Since $\frac{dv}{d} = g - \frac{5}{4}$ 4 $\frac{dv}{dt} = g - \frac{5}{4}v$, the time taken for the parachutist to reach a speed of 7.5 ms⁻¹ is

$$
\int_0^{7.5} \frac{dv}{g - \frac{5}{4}v} \approx 2.51
$$
 [A1]

d.

Find when $v = \frac{3}{3}$ 5 $v = \frac{3g}{4}$:

$$
\frac{3g}{5} = \frac{4g}{5} \left(1 - e^{-\frac{5}{4}t} \right)
$$

$$
\Rightarrow \frac{3}{4} = 1 - e^{-\frac{5}{4}t}
$$

$$
\Rightarrow -\frac{5}{4}t = \log_e \left(\frac{1}{4} \right)
$$

$$
\Rightarrow t = \frac{4}{5} \log_e (4)
$$

We have **[M1]**

$$
\frac{dx}{dt} = \frac{4g}{5} \left(1 - e^{-\frac{5}{4}t} \right)
$$

and so the distance the parachutist falls is

$$
x = \int_0^{\frac{4}{5}\log_e(4)} \frac{4g}{5} \left(1 - e^{-\frac{5}{4}t}\right) dt \approx 3.99
$$
 [A1]

The parachutist falls 3.99 m, correct to two decimal places.

Alternatively, note that

$$
v\frac{dv}{dx} = g - \frac{5}{4}v
$$

\n
$$
\Rightarrow x = \int_0^{\frac{3g}{5}} \frac{v}{g - \frac{5}{4}v} dv \approx 3.99
$$
\n[A1]

e. The parachutist reaches the ground at time t_1 , where

$$
\int_0^{t_1} \frac{4g}{5} \left(1 - e^{-\frac{5}{4}t} \right) dt = 1500.
$$

By CAS, $t_1 \approx 192.127$ seconds. **[A1]**

The helicopter is initially at rest and reaches a speed of 50 ms^{-1} in 30 seconds. Using the constant acceleration formula $v = u + at$ we have

$$
50 = 30a
$$

$$
\Rightarrow a = \frac{5}{3} \text{ ms}^{-2}
$$

The distance travelled by the helicopter in the time between $t = 0$ and $t = t_1$ is

$$
\frac{1}{2} \cdot \frac{5}{3} \cdot 30^2 + (t_1 - 30) \cdot 50 \approx 8856.33 \text{ m}
$$
 [H1]

The distance between the helicopter and the parachutist at the moment when she reaches the ground is

$$
\sqrt{8856.33^2 + 1500^2} \approx 8982.46 \text{ m}
$$

Therefore, the distance is 8982 m, to the nearest metre. [A1]

Question 4

a. i.

Logistic equation:
$$
\frac{dx}{dt} = kx \left(1 - \frac{x}{K}\right).
$$

k is the growth parameter.

By inspection of
$$
\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right)
$$
: $k = 0.15$.

Answer: 0.15. **[A1]**

a. ii.

Logistic equation:
$$
\frac{dx}{dt} = kx \left(1 - \frac{x}{K}\right).
$$

K is the carrying capacity (the sustainable number that can be sustained by the environment).

By inspection of
$$
\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right)
$$
: $K = 30$.

Answer: 30, 000. **[A1]**

Note: Must multiply by 1,000 because *P* is measured in units of thousands.

a. iii.

 Maximum rate of change occurs at the point of inflection of the logistic curve.

Method 1:

• Therefore
$$
P = \frac{K}{2} = 15
$$
.

Method 2:

$$
P = P
$$
-coordinate of turning point of $\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right)$.

Answer: 15,000. **[A1]**

a. iv.

- The year $1872 \Rightarrow t = 22$.
- Population $28,500 \Rightarrow P = 28.5$.
- The year $1850 \Rightarrow t = 0$.
- Use a CAS to solve $\frac{du}{dx} = 0.15 P | 1$ 30 $\frac{dP}{dr} = 0.15P\left(1 - \frac{P}{2\epsilon}\right)$ $\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right)$ subject to $P(22) = 28.5$: 570

$$
P = \frac{5/0}{19 + e^{-\frac{3}{20}(t-22)}}
$$

Note: Forms of solution (including forms using decimal approximations) are possible.

• Substitute $t = 0$ and solve for *P*:

.

 $P = 12.361$ (correct to three decimal places).

Answer: 12,361. **[A1]**

Note on using the ClassPad:

The ClassPad does not directly give the solution for *P* in terms of *t*:

Option 1: Substitute *t* = 0 and solve for *P* using an appropriate restriction on *P*:

solve
$$
\left(\frac{(|P|)^{\frac{1}{30}}}{(|P-30|)^{\frac{1}{30}}} = \frac{57^{\frac{1}{30}} \cdot e^{\frac{0}{200} - \frac{11}{100}}}{3^{\frac{1}{30}}}, P, 0, 0, 100 \right)
$$

\n{P=12.36103622}

Option 3: Use the integral solution:

 $P = 12.361$ is chosen since $P > 0$.

b. i.

Answer:
$$
\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right) - n.
$$
 [A1]

b. ii.

Use a CAS to solve
$$
\frac{dP}{dt} = 0 = 0.15P\left(1 - \frac{P}{30}\right) - n
$$
 for P:

Case 1:
$$
P = 5(3 + \sqrt{9 - 8n}).
$$

\n $5(3 + \sqrt{9 - 8n}) = 18$ $\Rightarrow n = 1.08.$
\nCase 2: $P = 5(3 - \sqrt{9 - 8n}).$

 $5(3-\sqrt{9-8n}) = 18$ has no solution.

Answer:
$$
n = 1.08
$$
. [A1]

Note:

• Under the $1850 - 1900$ ' model:

The year $1900 \Rightarrow t = 50$ and $P(50) = 29.976$ (correct to three decimal places).

Therefore:

• $5(3 + \sqrt{9-8n}) = 29.976$ $\implies n = 0.004$ (correct to three decimal places) corresponds to the population remaining constant.

Case 1 (*n* =1.08) corresponds to *P* decreasing from 29.976 towards

- The minimum equilibrium value of *P* is 15 and occurs when $9-8n = 0 \Rightarrow n = \frac{9}{8}$ 8 $-8n = 0 \Rightarrow n = \frac{5}{8}$.
- If $n > \frac{9}{9}$ 8 $n > \frac{1}{2}$ the population will decrease to zero.
- If $0 \le n < 0.004$ the population will increase to an equilibrium value.

The maximum equilibrium value of *P* is 30 and occurs when $n = 0$.

b. iii.

• Use a CAS to solve
$$
\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right) - 1.290
$$
 subject to $P(0) = 29.976$:

$$
P = 15 - \sqrt{33}t \text{ an } \left(\frac{\sqrt{33}t}{200} - \arctan\left(\frac{624\sqrt{3}}{125\sqrt{11}}\right)\right).
$$

Note: Other forms of solution (including forms using decimal approximations) are possible.

• Use the above solution to solve $P = 12$ for *t*:

 $t = 58.7$ (correct to one decimal place) which corresponds to during the year1958.

Answer: 1958. **[A1]**

Note:

Calculation of the estimate given in the question of the polar bear population in 1900:

Under the '1850 – 1900' model:

The year $1900 \Rightarrow t = 50$ and $P(50) = 29.976$ (correct to three decimal places).

Question from the cutting room floor:

b. iv. Find the largest value of *n* for which polar bears will not become extinct. Give your answer in thousands per year. 2 marks

Solution:

From **part b i.**: $\frac{du}{dt} = 0.15P|1$ 30 $\frac{dP}{dr} = 0.15P\left(1 - \frac{P}{20}\right) - n$ $\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right) - n, \ \ n \ge 0.$

It is required that $\frac{dP}{dx} \ge 0$ *dt* ≥ 0 for $P > 0$.

 $0.15P$ | 1 30 $\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{20}\right) - n$ $\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right) - n$ has a maximum turning point at $P = 15$.

When $P = 15$: $\frac{dP}{dt} = 0.15(15) \left(1 - \frac{15}{30}\right) - n$ $\frac{dP}{dt} = 0.15(15)\left(1 - \frac{15}{30}\right) - n = 1.125 - n.$

$$
1.125 - n \ge 0 \qquad \Rightarrow n \le 1.125. \qquad \text{Answer: } n = 1.125.
$$

c. Answer

Shape: [A1]

P-intercept must be consistent with $P(0) = 11.720$.

*P***-coordinate of point of inflection:** *P* =13.52. **[A1]**

*t***-coordinate of point of inflection:** $t = 2.08$. **[H1]**

Calculations:

• Horizontal asymptote:

Solve
$$
\frac{dP}{dt} = 0 = 0.15P\left(1 - \frac{P}{30}\right) - 0.2\log_e\left(\frac{P}{4}\right)
$$
 to get the equilibrium value of *P*.

From a CAS: $P = 27.18$ (correct to two decimal places).

• *P*-coordinate of point of inflection:

Solve
$$
\frac{d^2 P}{dt^2} = 0
$$
 $\Rightarrow \frac{d}{dP} \left(0.15P \left(1 - \frac{P}{30} \right) - 0.2 \log_e \left(\frac{P}{4} \right) \right) = 0.$

Note: 2 2 Chain Rule d^2P d $\left(dP\right)$ d $\left(dP\right)$ dP $\frac{d^2P}{dt^2} = \frac{d}{dt}\left(\frac{dP}{dt}\right) = \frac{d}{dP}\left(\frac{dP}{dt}\right) \times \frac{dP}{dt}$.

From a CAS: $P = 13.52$ (correct to two decimal places).

t-coordinate of point of inflection:

Use the integral solution.

$$
\frac{dt}{dP} = \frac{1}{0.15P\left(1 - \frac{P}{30}\right) - 0.2\log_e\left(\frac{P}{4}\right)}, \text{ where } P(0) = 11.720
$$

$$
\Rightarrow t = \int_{11.720}^{P} \frac{1}{0.15w\left(1 - \frac{w}{30}\right) - 0.2\log_e\left(\frac{w}{4}\right)} dw.
$$

Substitute $P = 13.520797$ (using more accuracy than the final answer requires in order to avoid rounding error). From a CAS:

$$
t = \int_{11.720}^{13.520797} \frac{1}{0.15w \left(1 - \frac{w}{30}\right) - 0.2 \log_e \left(\frac{w}{4}\right)} dw = 2.08
$$
 (correct to two decimal places).

Note: The existence of a point of inflection is justified below.

• Shape:

Method 1: Use a phase diagram.

• Consider a graph of $\frac{dP}{dt}$ *dt* versus *P* over the domain $P \in [11.720, 27.180]$.

Note on domain:

 $P = 11.720$ is the initial population.

 $P = 27.180$ is the equilibrium value of *P*.

- Initially ($t = 0$): $\frac{dP}{dt} > 0$ *dt* > by inspection therefore *P* increases from 11.720.
- $\cdot \frac{dP}{dx} > 0$ *dt* > 0 as $P \rightarrow 27.180$ therefore $P = P(t)$ is an increasing function.
- $\frac{dP}{dt}$ has a turning point at *P* = 27.180 (correct to three decimal places) therefore the graph of $P = P(t)$ has a point of inflection at $P = 27.180$.
- $P = 27.180$ is an equilibrium solution and is a horizontal asymptote of $P = P(t)$.

Note: The integral solution to the differential equation suggests that $P \neq 27.180$:

$$
\frac{dt}{dP} = \frac{1}{0.15P\left(1 - \frac{P}{30}\right) - 0.2\log_e\left(\frac{P}{4}\right)} \implies t = \int_{11.720}^{P} \frac{1}{0.15w\left(1 - \frac{w}{30}\right) - 0.2\log_e\left(\frac{w}{4}\right)} dw
$$

and from a CAS:
$$
\lim_{P \to 27.180} \int_{11.720}^{P} \frac{1}{0.15w\left(1 - \frac{w}{30}\right) - 0.2\log_e\left(\frac{w}{4}\right)} dw = \text{large.}
$$

Method 2: Some CAS (such as *Mathematica*) can solve the differential equation

$$
\frac{dP}{dt} = 0.15P\left(1 - \frac{P}{30}\right) - 0.2\log_e\left(\frac{P}{4}\right)
$$
 subject to $P(0) = 11.720$

numerically and plot this solution.

The *t*-coordinate of the point of inflection can be found by some CAS by solving $P(t) = 14.3007$ from the numerical solution.

Note:

Calculation of the estimate given in the question of the polar bear population in 1960:

Under the 'large scale hunting' model:

The year $1960 \Rightarrow t = 60$.

From a CAS: $P(60) = 11.720$ (correct to three decimal places).

Question 5

a. i.

By inspection of a graph of 2 $y = f_2(x) = \frac{x^2 - 1}{e^x - x - 2}$ $= f_2(x) = \frac{x^2 - 1}{e^x - x - 2}$ (plot using a CAS) it can be seen that $y = f_2(x)$ has a diagonal asymptote as $x \to -\infty$:

Definition:

A line $y = mx + c$ is a diagonal asymptote of the function

$$
y = g(x)
$$
 as $x \to +\infty$ if $\lim_{x \to +\infty} (g(x) - [mx + c]) = 0$.

Similarly when $x \to -\infty$: $\lim_{x \to -\infty} (g(x) - [mx + c]) = 0$.

Note: If $m = 0$ then the line is a horizontal asymptote.

Method 1:

• From a CAS:
$$
f'(x) = -\frac{1 - e^x + 4x - 2xe^x + x^2 + x^2e^x}{(e^x - x - 2)^2}
$$

From a CAS: $\lim_{x \to -\infty} f'(x) = -1 = m$. [A1]

Note 1: $\lim_{x\to\pm\infty} f'(x)$ may not exist when a diagonal asymptote exists (in which case, **Method 2** should be used). Example: $f(x) = \frac{\sin(e^x)}{e^x}$ $f(x) = \frac{y}{x} + x$ $=$ $+$

has the diagonal asymptote $y = x$ as $x \to \pm \infty$ but $\lim_{x \to \infty} f'(x)$ does not exist.

.

Note 2: If $f(x)$ has a diagonal asymptote $y = mx + c$ and $\lim_{x \to \pm \infty} f'(x)$ exists, then *m* is given by the above equation. The converse is **not** true.

• Substitute $m = -1$ into the definition:

$$
\lim_{x \to -\infty} (f(x) - [-x + c]) = 0 \qquad \Rightarrow \lim_{x \to -\infty} (f(x) + x - c) = 0
$$

$$
\Rightarrow \lim_{x \to -\infty} (f(x) + x) = \lim_{x \to -\infty} (c) \qquad \Rightarrow \lim_{x \to -\infty} (f(x) + x) = c
$$

$$
\Rightarrow c = 2. \tag{A1}
$$

Check:
$$
\lim_{x \to -\infty} \left(\frac{x^2 - 1}{e^x - x - 2} - [-x + 2] \right) = 0
$$
 using a CAS.

Method 2:

It follows from the definition that:

•
$$
\lim_{x \to +\infty} \frac{g(x)}{x} = m
$$
. ... (1) • $\lim_{x \to +\infty} (g(x) - mx) = c$ (2)

Similarly when $x \rightarrow -\infty$:

 () lim *x g x ^m* →−∞ *^x* ⁼ . …. (1') lim () () *^x g x mx c* →−∞ − = . …. (2')

Proof of (1):
\n
$$
\lim_{x \to +\infty} (g(x) - [mx + c]) = 0 \implies \lim_{x \to +\infty} \left(\frac{g(x) - [mx + c]}{x} \right) = 0 \implies \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{mx + c}{x}
$$
\n
$$
\implies \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \left(m + \frac{c}{x} \right) \implies \lim_{x \to +\infty} \frac{g(x)}{x} = m + \lim_{x \to +\infty} \frac{c}{x} \implies \lim_{x \to +\infty} \frac{g(x)}{x} = m.
$$

Proof of (2):
\n
$$
\lim_{x \to +\infty} (g(x) - [mx + c]) = 0 \implies \lim_{x \to +\infty} (g(x) - mx) - \lim_{x \to +\infty} (c) = 0
$$
\n
$$
\implies \lim_{x \to +\infty} (g(x) - mx) - \lim_{x \to +\infty} (c) = 0 \implies \lim_{x \to +\infty} (g(x) - mx) - c = 0 \implies \lim_{x \to +\infty} (g(x) - mx) = c.
$$

Note: If $g(x)$ has a diagonal asymptote $y = mx + c$, then *m* and *c* are given by the above equations. The converse is **not** true.

Since $y = f(x)$ has a diagonal asymptote as $x \rightarrow -\infty$, use equations (1') and (2').

From a CAS:
$$
\lim_{x \to -\infty} \frac{f(x)}{x} = -1 = m
$$
. [A1]

Substitute $m = -1$: $\lim_{x \to -\infty} (f(x) + x) = c$.

From a CAS: $\lim_{x \to -\infty} (f(x) + x) = 2$. [A1]

Connection to Method 1: Theorem: If $\lim_{x \to \pm \infty} f'(x)$ exists then $\lim_{x \to \pm \infty} f'(x) = \lim_{x \to -\infty} \frac{f(x)}{x}$.

Method 3:

$$
f_2(x) - [mx + c] = \frac{x^2 - 1}{e^x - x - 2} - [mx + c]
$$

$$
= \frac{x^2(m+1) + x(2m+c) - e^x(mx - c)}{e^x - x - 2}
$$

using a CAS or 'by hand'.

Then
$$
\lim_{x \to -\infty} (f_2(x) - [mx + c]) = \lim_{x \to -\infty} \frac{x^2(m+1) + x(2m+c) - e^x(mx-c)}{e^x - x - 2} = 0
$$

is required. This can only happen if

$$
\lim_{x \to -\infty} (x^2(m+1) + x(2m+c)) = 0 \text{ (since } \lim_{x \to -\infty} e^x = 0)
$$

and this can only happen if

$$
m+1=0
$$

$$
2m+c=0.
$$

Therefore $m = -1$ and $c = 2$.

Note: Some CAS (such as *Mathematica*) can directly solve $\lim_{x \to \infty} (f_2(x) - [mx + c]) = 0$ for *m* and *c*.

Marking scheme:

- Correct shape and diagonal asymptote is shown: **[A1]** The diagonal asymptote is not required to pass through $x = 2$.
- Vertical and horizontal asymptotes: $x = -1.8414$, $x = 1.1462$, $y = 0$. [A1]
- Axial intercepts: (1, 0), (-1, 0), (0, 1). **[A1]**

Calculations:

- Shape: Plot a graph of 2 $y = f_2(x) = \frac{x^2 - 1}{e^x - x - 2}$ $f_2(x) = \frac{x^2 - 1}{e^x - x - 2}$ using a CAS.
- Horizontal asymptote: $\lim \frac{x^2 1}{x} = 0$ $lim_{x\to+\infty}e^x-x-2$ *x* $\lim_{x \to +\infty} \frac{x^2 - 1}{e^x - x - 2} = 0$.
- Vertical asymptotes: Use a CAS to solve $e^{x} x 2 = 0$.

$$
x = -1.8414, \qquad x = 1.1462.
$$

• Diagonal asymptote:

Existence is known from **part c.** and the behaviour of the graph

suggests the shape.

b. i.

Apply the definition:
$$
\lim_{x \to +\infty} f_k(x) = \lim_{x \to +\infty} \frac{x^2 - 1}{e^x - x - k} = 0.
$$

Answer: $y = 0$. **[A1]**

b. ii.

• Values of *x* for which $f_k(x) = \frac{x^2 - 1}{e^x - x - k}$ is undefined are required.

 \bullet It is therefore required that $e^{x} - x - k = 0$ has two real solutions **provided** $x^2 - 1 \neq 0$.

Note: If $e^x - x - k = 0$ and $x^2 - 1 = 0$ then $f_k(x)$ has the indeterminate form $f_k(x) = \frac{0}{0}$ (which indicates a 'hole') rather than being undefined.

•
$$
e^x - x - k = 0
$$
 $\implies e^x - x = k$.

From a graph of $y = e^x - x$ (plot using a CAS) it is seen that $e^x - x = k$ has two real solutions when the line $y = k$ lies above the tangent to the graph of $y = e^x - x$ at its turning point:

Use a CAS to get the coordinates of the turning point: $(0, 1)$.

Therefore $e^{x} - x - k = 0$ has two solutions when $k > 1$. [A1]

 But values of *k* such that $e^{x} - x - k = 0$ and $x^{2} - 1 = 0 \Rightarrow x = \pm 1$ [M1] must be rejected:

Case 1: $x=1$ $\Rightarrow e-1-k=0$ $\Rightarrow k=e-1>1$.

Case 2: $x = -1$ $\Rightarrow e^{-1} + 1 - k = 0$ $\Rightarrow k = -1 + 1 > 1$ *e* $\Rightarrow k = -1 > 1$.

Therefore $k = e-1$ and $k = \frac{1}{k+1}$ *e* $=$ $-$ + 1 are rejected.

Answer:
$$
k > 1 \setminus \left\{e-1, \frac{1}{e}+1\right\}.
$$
 [A1]

Note:

The graph of $f_k(x) = \frac{x^2 - 1}{e^x - x - k}$ has a 'hole' at $x = 1$ when $k = e - 1$ and a 'hole' at $x = -1$ when $k = -1$ *e* $= - + 1$.

c. i.

• From a CAS:
$$
f'_k(x) = -\frac{1 - e^x - 2e^x x + 2kx + x^2 + e^x x^2}{(e^x - k - x)^2}
$$
.

Substitute $x = 0$: $f'_k(0) = \frac{0}{(1-k)^2} = 0$ provided $(1-k)^2 \neq 0$. [A1]

• Therefore the case $k = 1$ must be investigated.

The graph of 2 $y = f_1(x) = \frac{x^2 - 1}{e^x - x - 1}$ $f_1(x) = \frac{x^2 - 1}{e^x - x - 1}$ (plot using a CAS) has a vertical asymptote $x = 0$:

Answer: $k \in R \setminus \{1\}$. **[A1]**

c. ii.

• Evaluate $f_k''(x) = 0$ at $x = 0$ using a CAS:

$$
\frac{1}{(1-k)^2} + \frac{2}{1-k} = 0.
$$

• Solve $\frac{1}{(1-k)^2} + \frac{2}{1-k} = 0$ using a CAS: $k = \frac{3}{2}$.

Therefore there is a potential point of inflection at $x = 0$ when $k = \frac{3}{2}$ 2 $k=\frac{3}{2}$.

Use the 'triple derivative' test to check for a change in concavity:

$$
f_{\frac{3}{2}}'''(0) = 4.
$$

Therefore there is a (stationary) point of inflection at $x = 0$ when $k = \frac{3}{5}$ 2 $k=\frac{3}{2}$.

Answer:
$$
k = \frac{3}{2}
$$
. [A1]

Evidence for check of change in concavity is required.

Question 6

a.

- Let *C* be the random variable "*Volume (ml) of coffee*".
- $C \sim \text{Normal}(\mu_C = 240, \sigma_C = 8).$
- Let the random variable $D = C_1 C_2$

where C_1 and C_2 are independent copies of C .

 $Pr(|D| > 5)$ is required.

 $\mu_D = \mu_{C_1} - \mu_{C_2} = 0$.

$$
\sigma_D^2 = \sigma_{C_1}^2 + (-1)^2 \sigma_{C_2}^2 = 2\sigma_C^2 = 2(8^2) = 128
$$

therefore $\sigma_D = \sqrt{128}$.

D follows a normal distribution since C_1 and C_2 are independent normal random variables:

$$
D \sim \text{Normal} \left(\mu_D = 0, \ \sigma_D = \sqrt{128} \right). \tag{A1}
$$

• From a CAS: $Pr(|D| > 5) = 0.6585$.

Answer: 0.6585. **[A1]**

b.

- Let *M* be the random variable "*Volume (ml) of milk*".
- $M \sim \text{Normal}(\mu_M = 10, \sigma_M = 2).$
- Let the random variable $T = C + M$.

 $Pr(T < 245)$ is required.

$$
\mu_T = \mu_C + \mu_M = 240 + 10 = 250.
$$

$$
\sigma_T^2 = \sigma_C^2 + \sigma_M^2 = 8^2 + 2^2 = 68
$$

therefore $\sigma_T = \sqrt{68}$.

T follows a normal distribution since *C* and *M* are independent normal random variables:

$$
T \sim \text{Normal}\left(\mu_T = 250, \ \sigma_T = \sqrt{68}\right). \tag{A1}
$$

• From a CAS: $Pr(T < 245) = 0.2721$.

c.

• Let the random variable $X = M_1 + M_2 + ... + M_n$

where M_1 , M_2 ..., M_n are independent copies of *M*.

The maximum value of *n* such that $Pr(X \le 650) = 0.999$ is required.

$$
\mu_X = \mu_{M_1} + \mu_{M_2} + \ldots + \mu_{M_n} = n\mu_M = 10n.
$$

$$
\sigma_X^2 = \sigma_{M_1}^2 + \sigma_{M_2}^2 + \dots + \sigma_{M_n}^2 = n\sigma_M^2 = n(2^2) = 4n
$$

therefore $\sigma_X = 2\sqrt{n}$.

X follows a normal distribution since $M_1, M_2, ..., M_n$ are independent normal random variables:

$$
X \sim \text{Normal}\left(\mu_X = 10n, \ \sigma_X = 2\sqrt{n}\right). \tag{A1}
$$

• Use a CAS to solve $Pr(X \le 600) = 0.999$ for *n*: $n = 55.4$.

Either solve a probability distribution equation containing *n* or use trial-and-error (substitute values of *n*) to narrow in on the answer.

Rounding **down** to the nearest whole number is required.

Answer: 55. **[A1]**

d. i.

Answer:
$$
H_0
$$
: $\mu = 240$.
 H_1 : $\mu < 240$.

 [A1] Both statements are required.

d. ii

 $C \sim \text{Normal}(\mu_C = 240, \sigma_C = 8)$

therefore the random variable $\overline{C} \sim \text{Normal} \left(\mu_{\overline{C}} = \mu_C = 240, \sigma_{\overline{C}} = \frac{\sigma_C}{\sqrt{2}} = \frac{8}{\sqrt{2}}$ 15 $\sigma_{\overline{C}} = \mu_C = 240, \quad \sigma_{\overline{C}} = \frac{\sigma_C}{\sqrt{n}}$ $\mu_{\overline{C}} = \mu_C = 240, \sigma_{\overline{C}} = \frac{\sigma}{\sqrt{2}}$ $\left(\mu_{\overline{C}} = \mu_C = 240, \sigma_{\overline{C}} = \frac{\sigma_C}{\sqrt{n}} = \frac{8}{\sqrt{15}}\right).$

Mean volume (ml) of a cup of coffee $=$ $\frac{3555}{15}$ = 237.

p value = $Pr(\overline{C} < 237)$.

Use a CAS: $Pr(\overline{C} < 237) = 0.0732$.

Answer: 0.0732. **[A1]**

d. iii.

No.

Level of significance = 0.05 . *p* value = 0.0732 .

 p value $>$ level of significance.

d. iv.

Let \bar{x}_c be the mean volume of a cup of coffee.

The smallest value of \bar{x}_c such that $Pr(\bar{C} < \bar{x}_c) < 0.05$ is required.

Use a CAS to find the value of $\overline{x_c}$ such that $Pr(\overline{C} < \overline{x_c}) = 0.05$ (the 'inverse normal problem'):

 $x_c = 236.60$ (correct to two decimal places).

Smallest total amount of coffee (with no milk) served in a sample of 15 cups for H_0 not to be rejected:

 $15(\overline{x}_c) = 15(236.60) = 3549$.

Answer: 3,549. **[A1]**

Note: This answer is consistent with the answer to **part d. iii.**:

In **part iii.** H_0 is not rejected because *p* value > level of significance.

The answer to **part iv.** means that H_0 is not rejected if total amount of coffee served in this sample is greater than 3549 ml.

The **part d.** preamble says that the total is 3555 ml.

Therefore the answer to **part iv.** means that H_0 is not rejected, which is consistent with **part iii**.