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Question 1  

Worked solution 
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Mark allocation: 3 marks 

• 1 mark for the correct simplification of integrand 

• 1 mark for the correct antiderivative 

• 1 mark for the correct answer  

Note: Any other correct equivalent integral and antiderivative should be given full marks. 

 

  



3 

Copyright © Insight Publications 2023 

Question 2a. 

Worked solution 

A vector that is perpendicular to both a and b can be determined using the vector cross 

product. 

a b (2i 3j 4k) (i 2 j 3k) = − +  + −   

        

2 2 2

i j k
3 4 2 4 2 3

2 -3 4 i j k
2 3 1 3 1 2

1 2 -3

(9 8)i ( 6 4) j (4 3)k

i 10 j 7k

i 10 j 7k (1) (10) (7) 150 5 6

− −
= = − +

− −

= − − − − + −−

= + +

+ + = + + = =

 

Therefore a unit vector that is perpendicular to both vectors is given by 

1
(i 10 j 7k)

5 6
+ +  

Mark allocation: 2 marks 

• 1 mark for the correct cross product 

• 1 mark for the correct answer 

 

Question 2b.  

Worked solution 

From part a, a vector normal to the plane containing vectors a and b is n i 10 j 7k.= + +  

Vector a 2i 3j 4k= − + can be taken as the position vector of a point in the plane. 

The Cartesian equation of the plane can be found by solving for the constant k in 

10 7 .x y z k+ + =  

Using O (0, 0, 0): 

0 10(0) 7(0) 0 k+ + = =  

Therefore the Cartesian equation of the plane is 10 7 0.x y z+ + = . 

Mark allocation: 2 marks 

• 1 mark for choosing a correct point on the plane and vector normal to plane 

• 1 mark for writing the correct Cartesian equation of the plane 

Note: Any other point on the plane could be used to determine the value of k . 
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Question 2c. 

Worked solution 

The position vector of P is 2i 2j 1kOP = − + + . 

The distance from P to the plane is given by: 

ˆd nOP=  where n̂ is a unit vector perpendicular to the plane. 

From part a, 
6

ˆ (i 10 j 7k)
30

n = + +   

( ) ( )6 6 5
2i 2 j 1k i 10 j 7k ( 2 20 7)

30 30 6
d = − + +  + + = − + + =  

Mark allocation: 2 marks 

• 1 mark for the correct vector expression for the distance from the plane to P 

• 1 mark for the correct answer for d 
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Question 3a. 

Worked solution 

The given differential equation is separable and can be rearranged into the form 

( ) ( )g A dA h t dt=  

  
3

22A dA t dt
−

−=   

A general solution can then be obtained by integrating the left- and right-hand sides with 

reference to A and t respectively: 

3
22

1
122

A dA t dt

A t C

−
−

−
−

=

− = − +

   

A particular solution to the differential equation can then be determined by substituting the 

initial conditions into the general solution: 
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Mark allocation: 3 marks 

• 1 mark for setting up the correct integrals to solve the differential equation 

• 1 mark for the correct general solution of the differential equation 

• 1 mark for the correct particular solution of the differential equation 

 

  



7 

Copyright © Insight Publications 2023 

Question 3b. 

Worked solution 

As t approaches a very large number, ( )A t tends to 
2

2

4 4

9 9

t

t
= . 

Alternatively, to find the limiting value, A(t) can be expanded and then rearranged using long 

division into a form where the horizontal asymptote of A(t) can be easily determined: 

2

2

2

4
( )

9 6 1

4 4 6 1
       

9 9 9 6 1

t
A t

t t

t

t t

=
− +

+ 
= −  

− + 

 

As t becomes large, the second term of A(t) will approach zero. 

Hence the limiting value of A(t) is 24

9
m . 

Mark allocation: 1 mark 

• 1 mark for the correct limiting value 
 

Tip 

• When given a rational function of the form

2

2
( )

ax bx c
f x

dx ex f

+ +
=

+ +
, the 

quadratic term of the numerator and demoninator will become the dominant 

term as x tends to a very large value. 
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Question 4  

Worked solution 

Start by making substitutions for z and z using z x yi= + and z x yi= − : 
2 2

2 2 2 2

2 2

                  2( ) ( ) 27 2 10

2 4 2 2 27 2 10

                          3 3 2 27 2 10

x yi x yi i

x xyi y x xyi y i

x y xyi i

+ + − = −

+ − + − − = −

− + = −

 

Equating the real parts of the equation: 

2 2

2 2

3 3 27

    9

x y

x y

− =

− =
 

Equating the imaginary parts of the equation: 

2 2 10

  10

xy

xy

= −

= −
 

Solving the two simultaneous equations for x and y: 

2 2

2 2

4 2

2 2

2 2

10

9

9 10 0

( 10)( 1) 0

10, 1

1

x y

x y

y y

y y

y y

y

=

= +

+ − =

+ − =

= − =

= 

 

We disregard the 10y i=  solutions as y . 

When 1y = , 10x = − and when 1y = − , 10.x =  

Therefore, the solutions are 10z i= − + and 10 .z i= − . 

Mark allocation: 4 marks 

• 1 mark for the correct substitution for z and z  

• 1 mark for setting up correct equations relating x and y 

• 2 marks: 1 mark for each correct solution 

 

Tip 

• When solving equations over  that involve both z  and its conjugate 

 z , make the substitution z x yi= +  and z x yi= − , then consider both the 

real and imaginary parts of the equation to obtain the solution.  
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Question 5  

Worked solution 

When 1x = , 
2 3

3

(1) ( 1) 9

         ( 1) 8

              1 2

                   3

y

y

y

y

+ − =

− =

− =

=

 

Using implicit differentiation on both sides of the relation that describes the curve gives: 

22 3( ) 1 0
dy

x y x
dx

 
+ −  − = 

 
 

Point ( )1,3 can be substituted into the equation above to find the value of 
dy

dx
 at that point: 

( )
2

2(1) 3 3 1 1 0

2
                       1

12

1
                                1

6

5
                                

6

dy

dx

dy

dx

dy

dx

dy

dx

 
+ − − = 

 

− 
− = 

 

= − +

=

 

The gradient of the line normal to the curve at point (1,3)  is therefore
6

5
− . 

The equation of the normal line at point (1,3)  can be determined using point-slope form: 

( )
6

3 1
5

6 6 15
      

5 5 5

6 21
      

5 5

y x

y x

y x

− = − −

= − + +

= − +

 

Mark allocation: 4 marks 

• 1 mark for determining the correct y-coordinate of the relation when 1x =  

• 1 mark for the correct implicit differentiation of both sides of the relation 

• 1 mark for the correct gradient of the normal line 

• 1 mark for the correct equation of the normal line 

 

Tip 

• When determining equations of normal and tangents, using point-slope form 

of a line, 
1 1

( )y y m x x− = − , is the most efficient approach. 
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Question 6  

Worked solution 

The specified range of 
3

0,
9

y
 

 
 

corresponds to a domain 
1

0,
3

x
 

 
 

. 

The surface area of the volume of revolution is given by the integral: 

( )
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=

=

=

=
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The following substitution for the integrand and terminals can be made: 
4

3

3

4

1 9

36

1

36

1 1
1 9( ) 2

3 3

0 1 0 1

u x

du
x

dx

du x dx

x u

x u

= +

=

=

= → = + =

= → = + =

 

The required integral then becomes: 

( )
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2
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2 1

2

1

2
3

2

1

3 3

2 2

2
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2

18 3

2
(2) (1)
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2 2 1
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u

u

u

u
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S u du
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=

=

=

=

=
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=  

 

 
=  − 

 

−
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Mark allocation: 4 marks  

• 1 mark for the correct integral expression to determine the surface area of the volume of 

rotation 

• 1 mark for the correct u-substitution and change of terminals 

• 1 mark for the correct antiderivative 

• 1 mark for the correct answer 

Tip 

• When using a u-substitution to evaluate a definite integral, do not forget to 

change the terminals from values of x to values of u. 
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Question 7a. 

Worked solution 

2

2

1 2 3 4 5 6 7 1 2 3 4

2 2

C

W ~ (25,1 )

S ~ (5,1.5 )

C W +W +W +W +W +W +W +S +S +S +S

E(C) 7 E(W) 4 E(S) 7 25 4 5 195 mL

Var(C) 7 Var(W) 4 Var(S) 7 (1) 4 (1.5) 7 9 16

16 4 mL

n

n

N

N



=

=  +  =  +  =

=  +  =  +  = + =

= =

 

Mark allocation: 2 marks 

• 1 mark for the correct value of the mean 

• 1 mark for the correct value of the standard deviation 

 

Question 7b. 

Worked solution 

( )
202.84 195 7.84 0.05

Pr( 202.84) Pr Pr Pr 1.96 0.025
4 4 2

C Z Z Z
−   

 =  =  =   =   
   

 

Mark allocation: 1 mark 

• 1 mark for correct value for the probability 

 

Question 8a.  

Worked solution  

( ) ( )

A

B

B A

2 2

r (3) = (2+2×3)i + (9+3×3)j + (15+6×3)k = 8i + 18j + 33k

r (3) = (1+3)i + (2+4×3)j + (2+8×3)k = 4i + 14j + 26k

r (3) - r (3)  = (4-8)i + (14-18)j + (26-33)k  = -4i -4j -7k

= -4 + -4 + -( )
2

7  = 81 = 9 km

 

Mark allocation: 2 marks  

• 1 mark for correct evaluation of the position vectors at t = 3. 

• 1 mark for the correct answer 
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Question 8b. 

Worked solution  

The position vector of jet B describes a line with direction vector i 4 j 8k.d = + +  

The observation tower has position vector 20i 20jT = + . 

A vector from T to a point on the linear path of jet B can be found by finding: 

B( ) ( 19)i (4 18) j (8 2)kr t T t t t− = − + − + +  

For the minimum distance from T to the path of jet B, the vector from T must make a right 

angle with the path. 

( )

( )

B

B

( ) 1 ( 19) 4 (4 18) 8 (8 2)

19 16 72 64 16

81 75

( ) 0

81 75 0

75

81

25

27

r t T d t t t

t t t

t

r t T d

t

t

t

−  =  − +  − +  +

= − + − + +

= −

−  =

− =

=

=

 

Therefore jet B is closest to the observation tower at 
25

27
t =  hours 

Mark allocation: 2 marks 

• 1 mark for setting up a vector equation to find the minimum distance 

• 1 mark for the correct answer 
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Question 9  

Worked Solution 

Let ( )P n  be the proposition that 4 6 1n n+ −  is divisible by 3 for all n . 

Base step Consider
1

 (1) LHS 4 6 1 1 9P  = +  − =  which is divisible by 3.  

Inductive step Suppose P(k) is true for some k > 1. That is 4 6( ) 1 3k k m+ − =  for some

.m  Consider P(k + 1):   
1

as 4 3 6 1

4  6( 1) 1 4  4  6  5

                            4(3 6 1)  6   5

                            12 18 9

                            3(4 6 3)

k

k k

m k

k k

m k k

m k

m k

+

= − +

+ + − = + +

= − + + +

= − +

= − +

 

which is divisible by 3.  

So, P(1) is true and P(k) true implies P(k + 1) is true. Therefore, by the principle of 

mathematical induction, 4 6 1n n+ −  is divisible by 3 for all n . 

Mark allocation: 3 marks  

• 1 mark for showing that the proposition is true for 1n =  

• 1 mark for writing the correct proposition for n k=   

• 1 mark for showing that if the proposition is true for ,n k=  it is also true for 1n k= +  
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Question 10  

Worked solution 

The required area will be given by the integral
0

sin( ) .xA e x dx


=   

To evaluate A, integration by parts must be used twice, and the results combined to obtain an 

antiderivative.  

For the first iteration of integration by parts: 

 

sin( )

sin( ) cos( )

sin( ) cos( ) cos( ) 1

x

x

x x x

u e

du e dx

dv x

v x dx x

e x dx e x e x dx

=

=

=

= = −

= − +



 

 

Integration by parts can be employed a second time to find cos( )xe x dx . 

cos( )

cos( ) sin( )

cos( ) sin( ) sin( )  [2]

x

x

x x x

u e

du e dx

dv x

v x dx x

e x dx e x e x dx

=

=

=

= =

= −



 

 

Result [2] can be substituted into result [1] to find the required antiderivative: 

sin cos cos cos sin sin

sin cos sin sin

sin cos sin

(sin cos )
sin

2

2

x x x x x x

x x x x

x x x

x
x

e xdx e x e xdx e x e x e xdx

e xdx e x e x e xdx

e xdx e x e x

e x x
e xdx

 = − + = − + −
 

= − + −

= − +

−
=

  

 





 

This antiderivative can then be used to find the value of A: 

( ) ( )( ) ( ) ( )( )
0 0

0

(sin cos )
sin

2

sin cos sin 0 cos 0
  

2 2

1
  

2 2 2

1

x
x e x x

A e xdx

e e

e e





 

 

 −
= =  

 

   − −
= −   
   
   

   
= − − =   

 

+





 

Mark allocation: 5 marks  

• 1 mark for the correct integral expression for the required area 

• 1 mark for the correct first application of integration by parts 

• 1 mark for the correct second application of integration by parts 

• 1 mark for the correct antiderivative 

• 1 mark for the correct answer 

END OF WORKED SOLUTIONS 


