

Victorian Certificate of Education 2021

SUPERVISOR TO ATTACH PROCESSING LABEL HERE	

				Letter	
STUDENT NUMBER					

SPECIALIST MATHEMATICS

Written examination 1

Tuesday 1 June 2021

Reading time: 2.00 pm to 2.15 pm (15 minutes) Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 12 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where g = 9.8

Question 1 (4 marks)

 r^2

Find all values of x for which the second derivative is equal to zero.	2 mark
•	
Explain whether the graph of f has any points of inflection.	2 mar

OO NOT WRITE IN THIS AREA

Question 2 (5 marks)

An object of mass 10 kg on a horizontal plane is acted upon by a constant force of magnitude P newtons and a horizontal resistance force opposing the motion that has a magnitude equal to one quarter of the magnitude of the normal reaction force.

As a result, the object accelerates horizontally at 2 ms⁻².

•	Find the value of P in terms of g if P acts horizontally.	2 mark
		_
		_
		_
		_
		_
		_
	Find the value of P in terms of g if P acts at an angle of 30° upwards from the horizontal.	3 mar
		_
		_
		_
		_
		_
		_

Question 3 (3 marks)

Let *X* be a binomially distributed random variable with n = 4 and $p = \frac{1}{2}$. Let *Y* be a binomially distributed random variable with n = 6 and $p = \frac{1}{2}$. *X* and *Y* are independent random variables. Let *Z* be the random variable defined by Z = 2X + 3Y.

a. Find the mean of Z.
b. Find the standard deviation of Z.
2 marks

Question 4 (4 marks)

Consider the function $f: [-1, 1] \to R$, $f(x) = \arccos(x) - \frac{\pi}{2}$.

a. Sketch the graph of f on the axes below, labelling the endpoints with their coordinates.

2 marks

b. Sketch the graph of y = |f(x)| on the axes below.

1 mark

c. Sketch the graph of y = f(|x|) on the axes below.

1 mark

Question 5 (4 marks)

a. Solve the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$, given that y(0) = 1, to show that $y = \frac{x+1}{1-x}$.

b. Find $y\left(\frac{1}{\sqrt{3}}\right)$ in the form $a + \sqrt{b}$, where $a, b \in R$.

On	estion	6	(4	marks'	١
V u	CSUUII	v	1 →	manks	,

Find the values of a and b for $x^3y + ay^2 = b$, given that the tangent to the graph of the relation at (1, 1) has he equation $4x + 5y = 9$.				

Question	7	(3	marks'	١

fixed origin is x	metres.	illat its accelerati	1011 15 (3 + 0x) 111	is , where its disp	nacement nom a
If its velocity is	$4 \text{ ms}^{-1} \text{ when } x = 0, \text{ fin}$	nd its velocity, w	where $v > 0$, in m	etres per second,	when $x = 2$.

Question 8 (4 marks)

Find the volume of the solid of revolution formed when the graph of the relation $y = \frac{6}{\sqrt{1 - 9x^2}}$ from x = 0 to $x = \frac{1}{6}$ is rotated about the *x*-axis.

Question 9 (6 marks)

a. Show that $\frac{d}{dx}[\sec(x)] = \sec(x)\tan(x)$.

1 mark

b.	Hence, show that $\frac{d}{dx} [\log_e (\sec(x) + \tan(x))] = \sec(x)$.
----	--

1 mark

c.

ind the length of the curve $y = \log_e(\sec(x))$ for the interval $x \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$.	4 mai

Question 10 (3 marks)	
Find a, where $\sqrt{a} \in R$, given that $\sqrt{1+i\sqrt{a}} + \sqrt{1-i\sqrt{a}} = \sqrt{2a}$.	

Victorian Certificate of Education 2021

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	$2\pi rh$
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

Circular functions – continued

Function	sin ⁻¹ or arcsin	cos ⁻¹ or arccos	tan ⁻¹ or arctan
Domain	[-1, 1]	[-1, 1]	R
Range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$	
$ z = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	$E(aX + b) = aE(X) + b$ $E(aX + bY) = aE(X) + bE(Y)$ $var(aX + b) = a^{2}var(X)$
for independent random variables X and Y	$var(aX + bY) = a^{2}var(X) + b^{2}var(Y)$
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \ \overline{x} + z \frac{s}{\sqrt{n}}\right)$
distribution of sample mean \overline{X}	mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e x + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, a > 0$
$\frac{d}{dx}\left(\cos^{-1}(x)\right) = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c, a > 0$
$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$
	$\int (ax+b)^{-1} dx = \frac{1}{a} \log_e ax+b + c$
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
Euler's method	If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$
acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$
arc length	$\int_{x_1}^{x_2} \sqrt{1 + (f'(x))^2} dx \text{or} \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$

Vectors in two and three dimensions

$\begin{aligned} \mathbf{r} &= x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \\ |\mathbf{r}| &= \sqrt{x^2 + y^2 + z^2} = r \\ \dot{\mathbf{r}} &= \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} \\ \mathbf{r}_1 \cdot \mathbf{r}_2 &= r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2 \end{aligned}$

Mechanics

momentum	$ \tilde{\mathbf{p}} = m\tilde{\mathbf{v}} $
equation of motion	$\mathbf{R} = m\mathbf{a}$