The Mathematical Association of Victoria

SPECIALIST MATHEMATICS 2021
Trial Written Examination 2 - SOLUTIONS

SECTION A — Multiple-choice questions

ANSWERS
1 2 4 5 6 7 9 10
C D B A E C E B A D
11 12 13 14 15 16 17 18 19 20
C C C A E A A B D B
SOLUTIONS
Question 1 Answer is C
f(x)=2x+1+ ( 7 is the sum of a straight line and a truncus.
x—a
Using CAS we can find the coordinates of the turning point:
< EER" meqO] oec [I] X
1 Done
J‘l{_:-c):= 2r x+1+
2
(x-a)*
= +l
FAAN solve(i(;{x))%,x) wa
dx
Ax)pe=a+1 2-q+4

The graph of f has a local minimum at (@ +1,2a +4) and has two asymptotes (the straight line
v =2x+1 and the vertical line x =a).
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Question 2 Answer is D

V2 3
Since By <x< Tﬂ , tan(x) < 0. Note that

1
cot(2x) = 3
tan(2x) =3
2tan(x)
1—tan’(x) N
tan(x) = TL2Y10

3
This may be found using CAS:

mecg02
solve( =3,a]|a<0 G=M
2 &
1-a* =
. (10 +1) 210 20
l+a*|jg=——" o —
3 9 9

Since sec’(x) =1+ tan’(x) we have sec’(x) = %(\/ﬁ + 10).

Question 3 Answer is B

The period is 7 and so a =2 . From the graph we see that sec(2[%—bj) =—1 and so

)

3
Therefore, it could be the case that %— 2b=—-1 or %— 2b =1 giving b= Tﬂ- orb=-2.

The second of these options appears as a multiple-choice answer.
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Question 4 Answer is A

Let z=a+bi. Then

Im(zj Cm i(a+bi)j
z a—>bi
i(a+bi)(a+bi)
a*+b’ j
i(a2 -b’ +2abi)

a’ +b*

=Im

=Im

_az—b2
a’+b*

Alternatively, CAS can be used to find this result:

mcqO4
Zi=a+b- i a+b- i
iz 2,2
imag( : ] a”-b
conj (z) 5 "
a“+b=
Question 5 Answer is E

The gradient of the ray is 1 and the ray originates at the point (—1,2) (not inclusive of this point).
Therefore the equation of the line is y = x+3 and the function that describes the ray is
fi(=Lo)>R, f(x)=x+3.

Question 6 Answer is C

Note that \/g +i=2cis (%) and so

(V)" =((B 1) )

[+2a(3)
t

3.
=-8a’i
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Question 7 Answer is E

The length of the curve f(x)= eV between x=1 and x =4 is

J‘j\/1+(%(6ﬁ )jz dx = J‘j, f1+ e:f dx

Use CAS to perform the differentiation:

megO7

Question 8 Answer is B

Note that

| ¥ cos’ (2x)dx = jg(l —sin’(2x) ) cos(2x)dx .
) du 1
Let u =sin(2x) and so o =2cos(2x) = Ea’u =cos(2x)dx .
X

Now consider the terminals: When x =0, # =0 and when x = %, u=1.

Therefore the integral can be written in terms of u as

%J;(l—uz)du .
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Question 9

Draw an approximate solution curve that passes through the point (-3,2).

Trial Exam 2, Solutions

Answer is A

The curve also passes through the point (4,3).
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Question 10

The volume of salt solution in the tank at time # >0 is 100+ 5¢ and so a differential equation for

the amount of salt x in the tank

X .
— =rate 1n — rate out
dt

—0.05%x10——>%
100+ 5¢

1l x

2 20+1
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Answer is D

at time ¢ is
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Question 11 Answer is C

Using the scalar product we have

cost9=ﬂ
[a[[b]
_4-2+2

NEN

9
Using a trigonometric identity we have

tan’ (@) =sec’(0)—1

2
:(2] _1
4
65

16

J65

and so tan(d) = s
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Question 12 Answer is C

Suppose that the vectors a, b and ¢ are dependent. Therefore a+ fb=c.

Consider the 1 components: 2a+35=2.
Consider the j components: 2a+ 60 =-3.

Solving gives o =% and [ = —%.

Substituting this into the j components gives %m - 2(—%) =2=>m= —% .

. . . 8
So the vectors a, b and ¢ are linearly independent if m € R\ {_E .
Alternatively, vectors a, b and ¢ are independent if the determinant of the 3x3 matrix whose
rows (or columns) consist of the vectors a, b and ¢, is not zero. This determinant can be

evaluated and solved quickly using CAS:

1. B meq12 pes [i] X
2 m 2 -8
— m==—
A solve|det 3 -2 6 =0,m 1
2 2 -3
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Question 13 Answer is C
Al 7.2, 10
The component of F perpendicular to d is F —(E . (j)dZ ——1+ 5 j+ glg .

The magnitude of this vector is

This can be found using CAS:

el 1.1 13 megl3 I:1EI3|:] 4
r=[1 2 2] (122 *
a=[2 2 1] [2 2 1]
#-dotP(Funitv(d))- unitv(d) [ -7 2 10 ‘
9 9 9
([ -7 2 10“ 17
normj|— =— = ——
9 9 9 q
|
Question 14 Answer is A

Using a table to perform the step required for Euler’s method is often convenient:

n X, Y, »'
1 1 1
1 11 1 11 22
— I+ —=— i
10 10 10 21
2 [z o, 2 23 23
10 10 210 210 21
3 13 253 1 23 46
— ——t—X—=—
10 210 10 21 35

This can also be done on CAS, although a numerical result is obtained which must be compared
with the fractional options given.

2l 1.1 I3 mecqg14 UEGD >4
2~y
euler —JJ’,{ e },1,0.1
x+1
[1. 1.1 1.5 13 ]
1. 1.1 1.20476190476 1.21428571429
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Question 15 Answer is E
Note that

dy _sin(x+y)—sin(x—y)
dx 2xy

_ 2cos(x)sin(y)
- 2xy

_ cos(x)sin(y)
= T

Therefore I - )E )dy = J Cos(x)dx'
sin(y x

Question 16 Answer is A

Consider the system as a single mass of m + 2 kg acted upon by a force of 2g Newtons:

2+m)kg —— 2g

This gives 2g =6(m+2)=6m+12 and so

1 g
m=—R2g-12)==-2 ke.
6(g ) 3 g

Question 17 Answer is A

Consider the 1 components:

1+ =6t-4=1t=1,5

Now consider the J components:

3t+2=t'-8=t=5.

Therefore, the particles collide when ¢ = 5. The position of the point of collision is

r,(5)=26i+17]
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Question 18 Answer is B

. dv
Since a =— we have

dt  Jv+1

dv v :>J-\/7

Vv“dv:jdt

and so the time taken for the particle to increase in velocity from 1 ms™ to 5 ms™' is

e

1%

dv =2.966 seconds.

8] 1.1 g meg18 I:*EI::D =

= 2.96628480837

©The Mathematical Association of Victoria, 2021
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Question 19 Answer is D

— 382.81+387.19

Note that x = =385.

Consider the standard normal distribution:

0.5%

Y 99%

0.5%

Use CAS to find z if Pr(Z > z) =0.995. Then z=2.576.

So
X4z =387.19
T .
12
385+2.576.—= =387.19
Jn
n~200

382.81+387.19
2

invNorm(0.995,0,1)

solve|385+

n

2.576' 12

=387.19,n

2.57583

n=199.235
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Question 20 Answer is B
We have
E(X)=731

sd(y)=%

Therefore:

p—value = 2xPr(X >731| u=1725)
=0.0114

4 || » meq20 =

2: normCdf|721,%,725,

Kl

Note that this can also be found using the zTest command:

i |‘ . — 1 |‘ 4 meq20 < oes {1 P
Z Test
12 ] 2 3 H iy
2. nd po: [ 725 :l L2 zTest 725,15,731,40,0 s-taf results ) ]
"Title" z Test"
” l 15 :l "Alternate Hyp" "p# p0"
|73t | b "z" 252082
. "PVal" 0.011412
n:| 40 b v 14
Alternate Hyp: np 50,
| E— Iloll 15I
|ox] | cance
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SECTION B

Question 1

a.
Use CAS to find the coordinates of the point of inflection: (0.362,0.659) [A2]

f(x) 4- (r— 1) Done

2
x -4

2
e
A solve ;(}{YJFO,,Y

x=0.362165747256

f(x)|x=0.362165?4?2555 0.659458562186

| v

b.
4x-1) 3
=4 x+2 x-2

Note that f(x) = and so the asymptotes are x=2, x=-2 and y=0.

[A2]
1 mark for vertical asymptotes and 1 for horizontal asymptote

©The Mathematical Association of Victoria, 2021
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c.
The graph of y = f(x) is plotted below:

y

RN

2 \
\1 (0,1)

1} (0.362,0.659)
I
-5 -4 -3 2 -1 0],0! 2 3 4 5

—4
\ x=-2 x=2
|5 |

The asymptotes, the axis intercepts and the point of inflection are labelled. [A3]
1 mark for correct sketch, 1 mark for asymptotes correct and labelled, 1 mark for coordinates

di.
The volume of the solid is

2 2
V= ﬂj;(%} dx = ﬂjé%dx. [A2]

1 mark correct terminals and dx, 1 mark integrand and 7

©The Mathematical Association of Victoria, 2021
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ii.

Use CAS to find V = %(4—3loge(3)) . [A1]

x=0.262165747256

Ax)pe=0.2621657472555  0.659458562186

1 (2 1n(z)-4) n
610 [}{r))z dx 2
0

©The Mathematical Association of Victoria, 2021
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Question 2
a.
The cartesian equation of particle 4 is y = % , x>-—1. [A1]
2 2 2 2
- -2
The cartesian equation of particle B is x=2 2] =1or u+y— =1. [A1]
2 2 9 4
b.
The path of each particle is plotted below:
y
4
3
(2.2) o
2 ——

[A3]
1 mark each particle sketched, 1 mark for directions of both

1
Note that particle 4 begins at the point (_L_EJ and particle B begins at the point (2,2) and

moves in a clockwise direction.

c.

The particles are in the same x -position when ¢ = 3.106 and are in the same y -position when
t~1.456. [A1]
Therefore they do not collide. [A1]

With evidence

©The Mathematical Association of Victoria, 2021
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nSolve(3- sin(f)+2=r-1,,0)  3.10618894356

-1 1.45643778286
nSolve| 2 cos(r)=—,r.0
2

d. i
The distance between the particles at any time ¢ is

L, () —1,(0)| = \/(3sin(t)+2—t+l)2 +(200$(t)—t—;1j

Note that this can quickly entered into the calculator using the Norm command:

m(r):=[3- 51'n(:)+2 2 cos(r]] Done

-1 —

-1 l Done
2

fMin [norm (ra (r)-r'b (i‘}) .1‘,0)
=6.98679004424

Using CAS we find that the articles are closest to each other when ¢ = 6.987 seconds (correct to

three decimal places).
[A1]

©The Mathematical Association of Victoria, 2021
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ii.
Again, using the Norm command, we find that the closest the particles are to each other is 2.52
metres (correct to two decimal places).

[A1]

m(r):=[3- sin(:)+2 2 cos(r]] Done

-1 l Done

fMin [norm (ra (r)-r'b (i‘)) .1‘,0)
=6,98679004424

norm(ra()-rb(¢))jr=6.9867900442402
251827605823

©The Mathematical Association of Victoria, 2021
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Question 3

a.
The forces are labelled on the diagram:

2kg
2g
[A1]
b.
. SN
Consider a single 7 kg mass acted upon by forces 2g and 5g sin (30 ) = 5 g:
5gsin (30°) 7kg 2g
T
Then—g—2g:7a:>a:—gzﬁ ms [A2]
c.
Consider the hanging mass:
T
2kg
S8
7
T-2g=2x—
£ 0
r=Liog [A1]

©The Mathematical Association of Victoria, 2021
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d.

Use the constant acceleration formula v> = u* + 2as
7
VvV =2x—x5=7
10
Therefore v = \/7 . [A1]

e.i.
After the string breaks, the equation of motion for the mass is

F:57g—0.2v2 =5a [A1]

Therefore azg—va and so vﬂzg—va.
2 25

de 2 25

The mass must travel a further 5 metres to reach the bottom of the inclined plane.
An equation which gives the velocity v, at the bottom of the plane is

" v Vi 50v
J-ﬁTlvde—s or Iﬁmdv—S IAZ]
2 25

Correct integrand, correct terminals with equation

Note that a different symbol (in this case we have used v,) should be used.

ii.
Solving using CAS gives v, =6.71 ms~' correct to two decimal places as the speed at which the

particle reaches the bottom of the plane. [AT1]

1.1 I3 q03 rap [I] X

so]ve(?.S- 9.8-2- v2 =0,V)|V>0
v=11.0679718106

50-v
solve — dv=5,v1 |\/?<vf<,
2

25 9.8-2+ v2
f7

v1=6.71401777499

Note that v<5 \/% ~11.07 in order for the integral to be defined. This allows bounds to be

placed on the solution.

©The Mathematical Association of Victoria, 2021
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Question 4

a.

) X X X
Concentration=—

v 10+20t—10¢  10+107°

Answer: : [A1]
10+10¢
b.
dx
7 = (inflow of DHA) — (outflow of DHA)
t
=(rate of inflow of DHA) x (concentration of DHA in inflow)
— (rate of outflow of DHA) x (concentration of DHA in
outflow).
Substitute concentration of DHA in outflow = from part a.:
10+10¢
dx -0.2¢ X
—=(20)e " -(10)——— *
dt 20) 0) 10+10¢
00 0% %
1+¢
d. .
=T 2200, *
dt 1+t
All lines labelled * [A1]

©The Mathematical Association of Victoria, 2021
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C.

d y
Use a CAS to solve the differential equation 7); + % =20e ¥
+

subject to the initial condition x(0)=0:

~t/5 /5
~100e (6¢"° ~1-6) or ¢ 800-100(+6)e™”

x= [AT]
t+1 t+1
Use a CAS to solve x(¢) =30:
t=3.96 or t=16.02 (correctto two decimal places)
The value of 7 for which x is decreasing is required.
Option 1: Inspect a graph of x = x(¢) (draw the graph using a CAS).
. dx
Option 2: Choose the value of 7 such that T <0 when x=30.
. . dx 02t X
Substitute x =30 into — =20e ~ ———:
dt 1+¢
d.
_x — 206—0.21 _ﬂ ]
dt 1+¢
dx
Use a CAS to test the value of E for t=3.96 and 1 =16.02:
d d
1=3.96: £50. 1=16.02: £<0.
dt dt
Answer: t=16.02. [A1]

©The Mathematical Association of Victoria, 2021
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d.

1
* Step size: 20 seconds = E minute.

Note: The unit of time in the differential equation is minutes therefore the
step size must be converted from seconds to minutes.

* From the initial condition x(0)=0: x, =0 and #, =0.

. @:206_0.21‘ _i

dt 1+¢

* The number of steps in 3 minutes is 9 therefore the value of X, is required.

Use a CAS to run Euler’s Method with the above input data.

Answer: 27.81.

.

Use a CAS to substitute ¢ = 4 into the solution to the differential equation
found in part c.:

x=30.134207 .

Note: More accuracy than the final answer requires must be used so as to avoid
rounding error.

Substitute £ =4 and x =30.134207 into % —20e70% _ X

1+¢°
dx

% =2.960 grams per minute (correct to three decimal places).
t

Answer: 2.960 grams per minute.

©The Mathematical Association of Victoria, 2021
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f.

dx _ X
By inspection of — = 20e 020 __2 .
dt 1+¢

Rate of outflow of DHA = X [M1]

1+¢

N ~t/5
where x = 600 100(t1+ 6)e is the solution to the differential equation found in part c.
t+

Therefore the amount of DHA that has flowed out of the tank over the first 8 minutes is
given by

— dt [M1]
1+¢

—t/5
where 1 — 600—-100(z + 6)e
t+1

=44.5498 grams (correct to four decimal places).

Answer: 44.5. [A1]

©The Mathematical Association of Victoria, 2021
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Question 5

a.

The given relation is a circle. It can be written in standard form as | z—(1-1)|=1.
By inspection of the standard form:

Centreat z=1-1.

Radius r=1.
Im(z)

P 1 1 2 Re®)

(M1]

Correct centre and radius are required.

©The Mathematical Association of Victoria, 2021
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b. i.

26

By symmetry, the value of z with the largest modulus is represented by the point
of intersection A of the circle and the line passing through the origin O and centre

C(l, —1) of the circle.

Im(z)
PR

occurs

collinear.

-2 -1
Algebraic Method:
Circle: (x—1)°+(y+1)> =1. (1)
Line: y=—x. .. (2)

Use a CAS to solve equations (1) and (2) simultaneously:

1 V241 2+42

x=lxt— =
2 2 2
2—+/2
Reject x = 2\/7 (corresponds to minimum modulus).
Geometric Method:

|z|20C+CA=2+1. Arg(z)=—%.

Therefore the polar form of z is z = (\/5 +1I)cis (—%) .

2

Answer: —[2+\/§] '[2+\/§j
P z= > —1 .

©The Mathematical Association of Victoria, 2021

Note: Let P be a point on the circle.
From triangle OPC: OP <OC+CP
therefore the maximum value of OP

at P when the points O, C and P are

Im(z)
2

[M1]

Both equations.

[A1]

[A1]
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b. ii.

By inspection of the graph in part a. the largest principal argument is 0 (when z =1).
Answer: z=1. [A1]

c. i
It is required that the distance of the point representing z = x +iy from the origin

to the circle is \/5; iyt = \/5
Circle: (x—1)°+(y+1)> =1. - (1)

\/x2+y2:\/§. ...(3)

(M1]

Both equations.
Use a CAS to solve equations (1) and (3) simultaneously:

2+4/2 _—2+\/§

T, VT
22 22
2 7 2

2442 (-2+42) 2-42  (2-42)
+1 , z= +1 .

Answer: z = [AT]
2 2 2 2
c. ii.
The value of z represented by the point of intersection of the circle and the line passing
through the origin with gradient m = tan(£) where @ = tan™'(=2) is required.
Circle: (x—1)°+(y+1)> =1. - (1)
Line: y=-2x. ... (4
[M1]

Both equations.
Use a CAS to solve equations (1) and (4) simultaneously:

x=1, y=-2
ool 2
57T
Answer: z=1-2i, z=——i—. [A1]

©The Mathematical Association of Victoria, 2021
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d.
Compare | z—1+i|=1 with x/z‘z—(l+\/§)+ai‘ =2z—-b+2i|:

o |z-1+il=1
=lz-1+i[*=1
= (z-1+i)(z-1+i)=1

= (z=1+i)(z-1-i)=1.
Expand using a CAS: z;+(—1—i)z+(—l+i);+1:0. (D)

. \/E‘z—(l+x/§)+ai‘ =22 —b+2i|

2
:>2‘z—(1+\/§)+ai‘ =22 b+2i]

:>2(2—(1+\/§)+ai)(z—(l+\/§)+ai)=(22—b+2i)(2z—b+2i)

- 2(2—(1+\/§)+ai)(2—(l+\/§)—ai) = (2z-b+2i)(2z—b—2i) since a,he R.
Expand both sides using a CAS:

ZzE+2(—(1+ﬁ)—ai)z+2(—(1+\/§)+ai)2+6+4\/§+2a2

=4zz+(—2b—4i)z+(-2b+4i)z+b> +4

:>2zE+(—2b—4i+2(1+ﬁ)+2ai)z+(—2b+4i+2(1+\E)—zai)z

02 -2-4J2-24>=0. ...(2
Compare equations (1) and (2).
Consider the coefficients of either z or z :
2(=1=i)=—2b—4i+2(1+~/2) +2ai
— —1-i=-b+(1+2)+(a-2)i. . (3) [A1]

©The Mathematical Association of Victoria, 2021
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Equate real and imaginary parts of equation (3).
Real parts: —1:—b+(l+\/§) —bh=2+2.

Imaginary parts: —1=a—-2 =a=1.

Answer: a=1, b=2++2. [A1]

Note: These answers can be checked by comparing the constant terms of equations (1) and (2).

2=bp2-2-4J2-24*

:>2=(2+ﬁ)2—2—4ﬁ—2=o v,

©The Mathematical Association of Victoria, 2021
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Question 6
a.

* Let X be the random variable “Mass (grams) of a Wakandan apple”.

* X~Normal(u, =125, o, =20).

* Let the number of apples in a paper bag be n.

* Let W be the random variable “Sum of mass (grams) of n apples”.
W=X+X,+---+X,

where X, X,, ... X, are independent copies of X.

Note: Using the random variable nX is incorrect: X, + X, +---+ X, #nX .
* The largest value of n such that Pr(# <2000) > 0.9 is required.

Note: Must convert 2 kg into 2000 grams since the unit of X is grams.

* W follows a normal distribution since X,, X,, ... X, are independent normal random variables.

* EW) =ty = piy, + piy, +-o- phy, =npy =125n.

* Var(W) = Var(X,) + Var(X,) +---Var(X,) =nVar(X) =n(20)*

=sd(W)=0, =20n .

* Therefore W~ Normal(,uW =125n, o, = 20\/;). [M1]

* The largest value of n such that Pr(# <2000) > 0.9 is required.

Answer: 15. [A1]

©The Mathematical Association of Victoria, 2021
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Method 1:

¢ Define the function

/(x) =normCf{ ~<0, 2000, 125x, 20V ).

T T T
Lower Upper uy, oy
value value

The smallest value of x € Z" such that f(x)>0.9 is required.

* Solve using a CAS from either a table of values, solving f(x)=0.9 or trial-and-error: x=15.

Method 2:

* Find the value of z such that Pr(Z <z)=0.9.

Use the inverse normal command on a CAS: z=1.282.

Note: Sufficient accuracy is required to ensure that the final answer is correct to the nearest integer.

. ZZW—,uW :1.282:2000—12514‘

oy 20\/;

Solve using a CAS: n=15.2.
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b. i.
Answer: H,: u, =125.

H: pu, #125.
[AT]

Both statements are required.
b. ii.

The probability of rejecting H, when it is true is the level of significance
of the statistical test.

2% level of significance < o =0.02.

Answer: 0.02. [A1]

b. iii.
(Cl* , C;) is the interval such that H is accepted at the 2% level of significance when

the sample mean xe (Cl*, C’; ) .

Note: (Cl*, C;) is not a 98% confidence interval. A 98% confidence interval is the

interval such that H, is accepted at the 2% level of significance when it contains s,
(the population mean under H,)).

* H, is accepted at the 2% level of siginificance if xe (Cl*, C;)

therefore |, is rejected at the 2% level of significance if x< Cl or x> C,.

* Sample of size 30 therefore X ~ Normal(,ux = Uy =125, o3 :E] [A1]

30

* 2% level of significance < a =0.02.

. Pr(}<Cf)=&=0.01. Pr(}>C;)=%=0.0l. [MI1]
2 2

Use the inverse normal command on a CAS:

Answer: C, =116.51. C, =133.50. [A1]

Both values are required.
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b. iv.
Use a CAS.

Answer: (115.21, 132.20). [A1]

b. v.

Answer: H should not be rejected at the 2% level of significance.

Accept either of the following justifications:
. xe (Cl*, C;) where x is the observed sample mean: 123.51¢ (1 16.51, 133.49) .

* 2% level of significance < 98% confidence interval.

U, =125 lies inside the 98% confidence interval (1 15.21, 132.20).
[HI]

Consequential on answers to part iii. or part iv.

Note: Calculating the p-value ( p =0.72 > o therefore H|, is not rejected) is a valid
but ridiculous justification given the intervals calculated in part iii. and part iv.

b. vi.
= 20
* X ~Nomal| - = u,, oy =—~1.
[IUX /uX X \/%J
* H, is accepted if ;e(Cl*, C;) where C; =116.51 and C, =133.49 (from part iii.)
* Therefore the required probability is given by

Pr(Cy <X <CJ | H, true) =Pr(C} < X <C} |y =114)

=Pr(116.51<}<133.49|yx=114). [H1]

Consequential on answers to part iii.

¢ Use the normal distribution command on a CAS:

Pr(116.51 <X< 133.49) —0.2459.

Answer: (0.2459. [AT1]

Remark: To accept H; when H, is true is to commit a type 2 error.
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Distribution of X when H, is true:

0.01 0.01
{ J
95 100 105 100 115 120 125 130 135 140 x
n=125
C1*=116.51 C2*=133.49

Distribution of X when H, is false:

Type 2 error

Pr(Accept I-TO | H, false)
=0.2459

v
= ——————— S ————+—
8595 100 105 110 115 120 125 130 135 140
pn=114
Cl*=116.51 C2*=133.49
Reject H, Accept H, Reject H,

[ 1 1 1 |‘ 1 1 1 ‘ 1 1 —_—
BB 100 105 110 115 120 125 130 135 140 X
CI*=116.51 C2*=133.49

END OF SOLUTIONS
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