

Victorian Certificate of Education 2019

SUPERVISOR TO ATTACH PROCESSING LABEL HERE	

			Letter
STUDENT NUMBER			

SPECIALIST MATHEMATICS

Written examination 1

Friday 8 November 2019

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 12 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g ms⁻², where g = 9.8

Ouestion	1	(4	marks)
Question	1	(4	IIIaiksi

Solve the differential equation	$\frac{dy}{dx} =$	$\frac{2ye^{2x}}{1+e^{2x}}$	given	that $y(0)$	$=\pi$
---------------------------------	-------------------	-----------------------------	-------	-------------	--------

Question 2 (3 marks)

Find all values of x for which $|x-4| = \frac{x}{2} + 7$.

Question 3 (3 marks)

A machine produces chocolate in the form of a continuous cylinder of radius 0.5 cm. Smaller cylindrical pieces are cut parallel to its end, as shown in the diagram below.

The lengths of the pieces vary with a mean of 3 cm and a standard deviation of 0.1 cm.

1 m
 1 m
1 m

Question 4 (3 marks)

The position vectors of two particles A and B at time t seconds after they have started moving are given by $\mathbf{r}_A(t) = \left(t^2 - 1\right)\mathbf{i} + \left(a + \frac{t}{3}\right)\mathbf{j}$ and $\mathbf{r}_B(t) = \left(t^3 - t\right)\mathbf{i} + \left(\arccos\left(\frac{t}{2}\right)\right)\mathbf{j}$ respectively, where a is a real constant and $0 \le t \le 2$.

Find the value of a if the particles collide after they have started moving.		

Question 5 (6 marks)

The graph of $f(x) = \cos^2(x) + \cos(x) + 1$ over the domain $0 \le x \le 2\pi$ is shown below.

a. i. Find f'(x).

ii. Hence, find the coordinates of the turning points of the graph in the interval $(0, 2\pi)$. 2 marks

b. Sketch the graph of $y = \frac{1}{f(x)}$ on the set of axes above. Clearly label the turning points and endpoints of this graph with their coordinates.

Find the value of d for which the vectors $\underline{a} = 2\underline{i} - 3\underline{j} + 4\underline{k}$, $\underline{b} = -2\underline{i} + 4\underline{j} - 8\underline{k}$ and $\underline{c} = -6\underline{i} + 2\underline{j} + d\underline{k}$ are	
linearly dependent.	

Question 7 (5 marks)

a. Show that $3 - \sqrt{3}i = 2\sqrt{3}\operatorname{cis}\left(-\frac{\pi}{6}\right)$.

1 mark

b. Find $(3 - \sqrt{3}i)^3$, expressing your answer in the form x + iy, where $x, y \in R$.

2 marks

c. Find the integer values of *n* for which $(3 - \sqrt{3}i)^n$ is real.

1 mark

d. Find the integer values of *n* for which $(3 - \sqrt{3}i)^n = ai$, where *a* is a real number.

1 mark

Question 8 (4 marks)

Find the volume of the solid of revolution formed when the graph of $y = \sqrt{\frac{1+2x}{1+x^2}}$ is rotated about the <i>x</i> -axis over the interval [0, 1].

Question 9 (4 marks)

a. A light inextensible string is connected at each end to a horizontal ceiling. A mass of m kilograms hangs in equilibrium from a smooth ring on the string, as shown in the diagram below. The string makes an angle α with the ceiling.

Express the tension, T newtons, in the string in terms of m , g and α .	

3 marks

b. A different light inextensible string is connected at each end to a horizontal ceiling. A mass of m kilograms hangs from a smooth ring on the string. A horizontal force of F newtons is applied to the ring. The tension in the string has a constant magnitude and the system is in equilibrium. At one end the string makes an angle β with the ceiling and at the other end the string makes an angle 2β with the ceiling, as shown in the diagram below.

Show that $F = mg\left(\frac{1 - \cos(\beta)}{\sin(\beta)}\right)$.

One	estion	10	(5	marks)
Vu.		10	1	munico.

Find $\frac{dy}{dx}$ at the point $\left(\frac{\sqrt{\pi}}{\sqrt{6}}, \frac{\sqrt{\pi}}{\sqrt{3}}\right)$ for the curve defined by the relation $\sin(x^2) + \cos(y^2) = \frac{3\sqrt{2}}{\pi}xy$.

Give your answer in the form $\frac{\pi - a\sqrt{b}}{\sqrt{a}(\pi + \sqrt{b})}$, where $a, b \in Z^+$.

Victorian Certificate of Education 2019

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	$2\pi rh$
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$

Circular functions – continued

Function	sin ⁻¹ or arcsin	cos ⁻¹ or arccos	tan ⁻¹ or arctan
Domain	[-1, 1]	[-1, 1]	R
Range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, π]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$	
$ z = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	$E(aX+b) = aE(X) + b$ $E(aX+bY) = aE(X) + bE(Y)$ $var(aX+b) = a^{2}var(X)$
for independent random variables X and Y	$var(aX + bY) = a^{2}var(X) + b^{2}var(Y)$
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \ \overline{x} + z \frac{s}{\sqrt{n}}\right)$
distribution of sample mean \overline{X}	mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e x + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = -\frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, a > 0$
$\frac{d}{dx}\left(\cos^{-1}(x)\right) = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c, a > 0$
$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a} \right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$
	$\int (ax+b)^{-1} dx = \frac{1}{a} \log_e ax+b + c$
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
Euler's method	If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$
acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$
arc length	$\int_{x_1}^{x_2} \sqrt{1 + (f'(x))^2} dx \text{ or } \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$

Vectors in two and three dimensions

$\begin{aligned} \mathbf{r} &= x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \\ |\mathbf{r}| &= \sqrt{x^2 + y^2 + z^2} = r \\ \dot{\mathbf{r}} &= \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} \\ \mathbf{r}_1 \cdot \mathbf{r}_2 &= r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2 \end{aligned}$

Mechanics

momentum	p = mv
equation of motion	$\mathbf{R} = m\mathbf{a}$