THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY

2019 Trial Examination

~~~~						Letter
STUDENT						
NUMBER					i	
		•			_	

# **SPECIALIST MATHEMATICS**

# Units 3&4 - Written examination 2

Reading time: 15 minutes
Writing time: 2 hours

### **QUESTION AND ANSWER BOOK**

#### Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
В	4	4	60
			Total 80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- No calculator is permitted in this examination.

### Materials supplied

• Question and answer book of 29 pages.

#### **Instructions**

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

© TSSM 2019 Page 1 of 29

# **SECTION A – Multiple-choice questions**

#### **Instructions for Section A**

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores zero.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

### **Question 1**

Given  $\cot \theta = \frac{3}{2}$ ,  $\sec \theta =$ 

A. 
$$\frac{\sqrt{13}}{3}$$
 only

**B.** 
$$-\frac{\sqrt{13}}{3}$$
 only

C. 
$$\frac{\sqrt{13}}{3}$$
 or  $-\frac{\sqrt{13}}{3}$ 

**D.** 
$$-\frac{3}{\sqrt{13}}$$
 only

**E.** 
$$\frac{3}{\sqrt{13}}$$
 or  $-\frac{3}{\sqrt{13}}$ 

### **Question 2**

$$\frac{\cos 2\alpha}{\cos^4 \alpha - \sin^4 \alpha}$$
 simplifies to

**A.** 1

**B.** 
$$-1$$

**D.** 
$$-\frac{1}{2}$$

E. 
$$\frac{1}{2}$$

**SECTION A - continued** 

### **Question 3**

The number of x-intercepts for the function  $f(x) = \tan(20x - \pi)$ ,  $x \in (0, 5\pi]$  is:

- **A.** 4
- **B.** 19
- **C.** 20
- **D.** 99
- **E.** 100

### **Question 4**

The set of solutions over C to  $z^5 = i$ , where  $i = \sqrt{-1}$  can be generated from the rule:

- **A.**  $cis\left(\frac{\pi \pm 4n\pi}{10}\right)$ , where n is an integer
- **B.**  $cis\left(\frac{\pi+4n\pi}{5}\right)$ , where n is an integer
- C.  $cis\left(\frac{\pi-4n\pi}{5}\right)$ , where n is an integer
- **D.**  $cis\left(\frac{\pi \pm 2n\pi}{10}\right)$ , where n is an integer
- **E.**  $cis\left(\frac{\pi+5n\pi}{10}\right)$ , where n is an integer

# **Question 5**

Given  $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ , a vector parallel to vector  $\mathbf{a}$  with a length of 12 units is:

- **A.** 12*a*
- B.  $12\hat{a}$
- C. 4i + 2j 4k
- **D.** -8i + 4j 8k
- E. 8i 4j 8k

**SECTION A -** continued

**TURN OVER** 

#### **Question 6**

Consider the following vectors:

$$\overrightarrow{AB} = 2i + 3j - 2k$$
 and  $\overrightarrow{BC} = 6i - j + 4k$ 

Let M be the midpoint of line AC. The acute angle between line AM and line MB is closest to:

- **A.** 55°
- **B.** 57°
- **C.** 59°
- **D.** 61°
- **E.** 63°

#### **Question 7**

The cubic polynomial P(z) has coefficients that are **NOT** all real.

Consider the solutions to P(z) = 0 over the complex field.

Which statement is true?

- **A.** P(z) cannot have a complex conjugate pair of solutions.
- **B.** P(z) cannot have 3 different complex solutions.
- C. P(z) must have exactly 1 real solution.
- **D.** P(z) must have a complex conjugate pair of solutions.
- **E.** P(z) **could** have two real and one non-real solution.

# **Question 8**

Let m = 4 + i and n = a + bi where  $m, n \in C$  and  $a, b \in R$ .

Given  $m \times n = -11 + 10i$  then  $m + \bar{n} =$ 

- **A.** 2 + i
- **B.** 2-2i
- C. 1 2i
- **D.** 2 i
- **E.** 1 + 2i

**SECTION A - continued** 

Page 4 of 29

© TSSM 2019

### **Question 9**

Consider the two points A and B where point A is on the curve defined by |z - 2i| = 2 and point B is on the line Re(z) - Im(z + 4i) = 2, where  $z \in C$ .

The smallest possible distance between points A and B is:

- **A.**  $4\sqrt{2} 2$
- **B.**  $4\sqrt{2} + 2$
- C.  $4\sqrt{2}$
- **D.**  $2\sqrt{2} + 2$
- **E.**  $2\sqrt{2}-2$

# **Question 10**

 $z^3 + az^2 - iz^2 + bz + iz + c = 0$  where  $a, b, c \in R$  has solutions of z = 1, z = -i and z = 2i. The values of a, b and c respectively are:

- **A.** a = 1, b = 2, c = -2
- **B.** a = 1, b = -2, c = -2
- C. a = -1, b = 2, c = -2
- **D.** a = -1, b = -2, c = 2
- **E.** a = -1, b = 2, c = 2

# **Question 11**

Given  $f(x) = x \tan^{-1} 2x$ ;  $f'(\frac{1}{2a})$  for appropriate values of a equals:

- **A.**  $\frac{2a}{a^2+1} + \tan^{-1}(\frac{1}{a})$
- **B.**  $\frac{a}{a^2+1} + \tan^{-1}(\frac{1}{a})$
- C.  $\frac{a}{a^2+1} + \tan^{-1}(\frac{1}{2a})$
- **D.**  $\frac{a}{4a^2+1} + \tan^{-1}(\frac{2}{a})$
- **E.**  $\frac{2a}{4a^2+1} + \tan^{-1}(\frac{2}{a})$

**SECTION A - continued** 

**TURN OVER** 

### **Question 12**

 $\int_0^1 \frac{2x}{\sqrt{2x+1}} dx$  can be rewritten as:

**A.** 
$$2\int_0^1 u^{1/2} - u^{-1/2} du$$
 where  $u = 2x + 1$ 

**B.** 
$$2\int_0^1 u^{1/2} - u^{-1/2} du$$
 where  $u = \sqrt{2x+1}$ 

C. 
$$\frac{1}{2}\int_{1}^{3} u^{\frac{1}{2}} - u^{-\frac{1}{2}} du$$
 where  $u = \sqrt{2x+1}$ 

**D.** 
$$\frac{1}{2} \int_{1}^{3} u^{\frac{1}{2}} - u^{-\frac{1}{2}} du$$
 where  $u = 2x + 1$ 

**E.** 
$$\frac{1}{2}\int_{1}^{3} u^{\frac{1}{2}} + u^{-\frac{1}{2}} du$$
 where  $u = 2x + 1$ 

### **Question 13**

The rule for the volume of a cone of radius r units and height h units can be generated by rotating:

**A.** 
$$y = \frac{h}{r}x$$
 around the  $x - axis$  from  $x = r$  to  $x = h$ 

**B.** 
$$y = \frac{h}{r}x$$
 around the  $x - axis$  from  $x = 0$  to  $x = r$ 

C. 
$$y = \frac{h}{r}x$$
 around the  $y - axis$  from  $y = 0$  to  $y = r$ 

**D.** 
$$y = \frac{h}{r}x$$
 around the  $y - axis$  from  $y = 0$  to  $y = h$ 

**E.** 
$$y = \frac{r}{h}x$$
 around the  $y - axis$  from  $y = 0$  to  $y = r$ 

### **Question 14**

The area bound by the curves  $y = x^3 - 2x^2$  and  $y = x^2 - 1$  is closest to:

- **A.** 1 square unit
- **B.** 2 square units
- **C.** 3 square units
- **D.** 4 square units
- **E.** 5 square units

**SECTION A - continued** 

### **Question 15**

Which statement is **NOT** true of the curve  $x^2 - 6x + y^2 + 8y = 0$ ?

- **A.** It is a circle centred at (3, -4)
- **B.** It passes through the origin.
- C. A point on the curve has parametric equations  $(5\cos\theta + 3, 5\sin\theta 4)$
- **D.** The gradient at any point on the curve is given by  $\frac{-x+3}{y+4}$
- **E.**  $y = \frac{3}{4}x$  is a tangent to the curve.

### **Question 16**

The maximum negative gradient on  $f(x) = x^2 e^x$  occurs when x =

- **A.**  $\sqrt{2} + 2$
- **B.**  $\sqrt{2} 2$
- C.  $2 \sqrt{2}$
- **D.**  $1 \sqrt{2}$
- **E.**  $\sqrt{2} + 1$

# **Question 17**

Consider the function  $a(x) = f(x) \times (g(x))^2$ 

Given f(2) = 2, g(2) = 0, f'(2) = 5, g'(2) = 3, then a''(2) =

- **A.** 36
- **B.** 24
- **C.** 18
- **D.** 12
- $\mathbf{E}$ . 0

**SECTION A - continued** 

**TURN OVER** 

#### **Question 18**

The lengths of timber pickets are normally distributed with a mean of  $\mu$  cm and a standard deviation of 1.5 cm.

What is the smallest sample size required to be at least 99% certain that the sample mean differs by less than 1 cm from the population mean?

- **A.** 3
- **B.** 4
- **C.** 12
- **D.** 15
- **E.** 25

### **Question 19**

A 10 kg mass is just on the point of slipping when placed on a rough plane inclined at 20° to the horizontal. What force, to the nearest newton, needs to be applied directly up the plane for the mass to accelerate at  $2 ms^{-2}$ ?

- **A.** 93
- **B.** 87
- **C.** 81
- **D.** 54
- **E.** 20

#### **Question 20**

An 8 kg mass attached to a string is pulled away from a vertical wall by force (F) inclined at 20° to the horizontal. Find, correct to the nearest newton, the magnitude of F so that the string maintains an angle of 60°

- **A.** 89
- **B.** 96
- **C.** 100
- **D.** 104
- **E.** 107



**END OF SECTION A** 

© TSSM 2019 Page 8 of 29

#### **SECTION B – Extended response questions**

#### **Instructions for Section B**

Answer all questions in the spaces provided.

In **all** questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** to scale.

#### Question 1 (17 marks)

The following map shows the position of two islands, Floxton (F) and Graceleigh (G). Floxton is located at (0,0) and Graceleigh is located at (15,25)





SECTION B – Question 1 - continued TURN OVER

© TSSM 2019 Page 9 of 29

a.	Write the position of Graceleigh $\overrightarrow{OG}$ in vector notation.	
		1 mark
A s	ight-seeing cruise boat leaves Floxton and sails at $20  kmh^{-1}$ on a bearing of <i>North</i>	30°East.
b.	Mark the boat's path on the graph provided at the beginning of the question.	1 mark
c.	Prove that the boat passes just to the north of Graceleigh.	
		2 marks

 $\begin{center} \textbf{SECTION B} - \textbf{Question 1 -} \\ \textbf{continued} \end{center}$ 

© TSSM 2019 Page 10 of 29

	t P, as a function of t where t is the number by $\overrightarrow{OP} = p = kt(i + \sqrt{3}j)$	per of hours since the boat
Find the value of k.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
		2 m
When is the boat due no	orth of Graceleigh?	

SECTION B – Question 1 - continued

**TURN OVER** 

1 mark

© TSSM 2019 Page 11 of 29

•	Find $\overrightarrow{PG}$ in terms of $t$ .

2 marks

**SECTION B – Question 1 -** continued


3 marks

SECTION B – Question 1 - continued TURN OVER

© TSSM 2019 Page 13 of 29

_	patrol boat has position (B) given by $\overrightarrow{OB} = (15\cos 2t + 15)i + (10\sin 2t)j$ here $t$ is the number of hours after the sight-seeing cruise boat leaves Floxton. $\sim$
h.	How far apart are the two boats when the sight-seeing cruise boat first leaves Floxton?
	2 marks
i.	Find the Cartesian equation of the patrol boat.
	2 marks

**SECTION B – Question 1 -** continued

© TSSM 2019 Page 14 of 29

**j.** Sketch and label the graph of the distance (D) between the two boats for  $t \in [0,2]$  Interpret the local minimum.



3 marks

1 + 1 + 2 + 2 + 1 + 2 + 3 + 1 + 1 + 3 = 17 marks

SECTION B – continued TURN OVER

© TSSM 2019 Page 15 of 29

### Question 2 (14 marks)

The following graph shows the function  $f: [-5,5] \to R$  where  $f(x) = \frac{x+1}{x^2+1}$ 



**a.** Find the derivative of  $f: [-5,5] \to R$  where  $f(x) = \frac{x+1}{x^2+1}$ 


_____

1 mark

SECTION B - Question 2 - continued

© TSSM 2019 Page 16 of 29

**b.** Find the exact co-ordinates of the stationary points to  $f: [-5,5] \to R$  where  $f(x) = \frac{x+1}{x^2+1}$  Mark these on the graph above.

3 marks

c. Sketch y = f'(x) on the axes below. Label intercepts and stationary points in exact form.



3 marks

**SECTION B – Question 2 -** continued

**TURN OVER** 

© TSSM 2019 Page 17 of 29

Let $g(x) = f'(x)$
Write down the exact range of $y = g(x)$ .
1 mark
Explain in words what this range of values represents, in terms of the original function
y = f(x).
1 mark

**SECTION B – Question 2 -** continued

	= g(x) intersect and the exact area be	(x) and $y = g($	(x)
n the domain $x \in$	[n, 1]		

3 marks

SECTION B – Question 2 - continued TURN OVER

© TSSM 2019 Page 19 of 29

	y = f(x) is rotated around the x-axis.
_	
-	
-	
-	
-	
-	
-	
-	
_	
-	2
	2 ma
	1 + 3 + 3 + 1 + 1 + 3 + 2 = 14 ma

**SECTION B** – continued

© TSSM 2019 Page 20 of 29

### Question 3 (12 marks)

A 5-metre playground slide is inclined at  $30^{\circ}$  to the horizontal. A  $40 \ kg$  boy (Aaron) sits at the very top of the slide.

Initially assume that the contact between the boy and the surface of the slide is smooth.

**a.** Show all the forces acting on Aaron on the diagram below.



1 mark

How long will it take Aaron to reach the bottom of the slide?
Give your answer correct to one decimal place.
The state of the s

1 mark

**SECTION B – Question 3 -** continued

**TURN OVER** 

© TSSM 2019 Page 21 of 29

_	
_	
-	
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	n fact, the contact between Aaron and the surface of the slide is not smooth. A resis
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.
fo	In fact, the contact between Aaron and the surface of the slide is not smooth. A resistorce of $F_R$ newtons (due to friction) acts directly up the plane.

2 marks

SECTION B - Question 3 - continued

© TSSM 2019 Page 22 of 29

	con wants to have a faster ride. He asks his sister to give him a push from the top of the slide. e provides a pushing force (P newtons) directly down the slide where:
	$= 960t,  0 \le t \le 0.5$
	= 0 otherwise
e.	Show that the Aaron's speed $0.5 \ seconds$ after the start of being pushed is $4.25 \ ms^{-1}$
f.	2 marks Find the distance that Aaron has travelled down the slide 0.5 <i>seconds</i> after the start of being pushed.
	pusited.

1 mark

**SECTION B – Question 3 -** continued

**TURN OVER** 

© TSSM 2019 Page 23 of 29

-					
_					
-					
-					
-					
-					
	2 n				
	2 11				
A horizontal rubber mat at the bottom of the slide slows Aaron down by providing a resist force of $100x$ newtons where $x$ is the horizontal distance from the end of the slide metres					
]	force of $100x$ newtons where x is the horizontal distance from the end of the slid				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				
]	force of $100x$ newtons where $x$ is the horizontal distance from the end of the slid metres.				

**SECTION B** – continued

© TSSM 2019 Page 24 of 29

### Question 4 (17 marks)

Mr Braggs, a Specialist Mathematics teacher has found an old exam question relating to the solutions to  $z^3 = -64i$ . He wants to compare how long his class takes to answer the question compared to the published data.

a.	Show by substitution that $z = 4i$ is a solution to $z^3 = -64i$
	1 mark
b <b>.</b>	Write $4i$ in $r$ $cis \theta$ form. (Call this $z_1$ ).

1 mark

SECTION B – Question 4 - continued TURN OVER

© TSSM 2019 Page 25 of 29

**d.** Write  $z_2$  and  $z_3$  in both polar and rectangular form.

**c.** Plot  $z_1$  on the axes below then plot  $z_2$  and  $z_3$  the other two solutions to  $z^3 = -64i$ 



2 marks


2 marks

**SECTION B – Question 4 -** continued

© TSSM 2019 Page 26 of 29

						2 n
						2 n
Using one of –64 <i>i</i> in rectan	your roots fr agular form.	om each of	$z^3 = -64i$	and $z^2 = -64i$	, find one so	
Using one of –64 <i>i</i> in rectan	igular form.			and $z^2 = -64i$		lution to
Using one of –64 <i>i</i> in rectan	igular form.					lution to
Using one of –64 <i>i</i> in rectan	igular form.					lution to
Using one of –64 <i>i</i> in rectan	igular form.					lution to
Using one of –64 <i>i</i> in rectan	igular form.					lution to
Using one of -64 <i>i</i> in rectan	igular form.					lution to
Using one of –64 <i>i</i> in rectar	igular form.					lution to
Using one of –64 <i>i</i> in rectar	igular form.					lution to

2 marks

SECTION B - Question 4 - continued

**TURN OVER** 

Time (t minutes) to complete the question from the state-wide population of students is wel modelled by a continuous random variable with a pdf given by:
$m(t) = at(t - 20);  0 \le t \le 20$ = 0, otherwise
g. Find the mean and standard deviation of m.
3 mark

Parts a. to f. of Question 4 were originally from an old Applied Mathematics exam paper.

**SECTION B – Question 4 -** continued

© TSSM 2019 Page 28 of 29

h. Mr Braggs is worried that his students take too long to answer application questions. this hypothesis, what mean time (correct to 2 decimal places) would Mr Bragg's class students need to record so that this time is higher than the state-wide mean at the 0.01						
	significance?					
	Assume that Mr Bragg's class is an independent sample from the entire population of students, who have attempted the question.					
	2 marks					
	In fact, Mr Braggs has a total of 25 students in his class. The two students who were absent on the day of the test, attempt the question the following day. What mean time (correct to 1 decimal place) would these two students need to record so that the entire class of 25 would achieve the same level of significance as the original 23 students?					
	2 marks					

END OF QUESTION AND ANSWER BOOK

1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 17 marks

© TSSM 2019 Page 29 of 29