

## **Trial Examination 2019**

# **VCE Specialist Mathematics Units 3&4**

Written Examination 1

**Suggested Solutions** 

#### **Question 1** (3 marks)

In the direction of motion we have 2pt + q = ma.

$$a = \frac{2pt + q}{m} \Rightarrow \frac{dv}{dt} = \frac{2pt + q}{m}$$

$$v = \frac{pt^2 + qt}{m} + c$$

When t = 0, v = 0 and so c = 0.

So 
$$v = \frac{pt^2 + qt}{m}$$
.

#### Question 2 (4 marks)



correct shape (two branches and asymptotic behaviour) A1

correct intercepts with the axes A1

*vertical asymptote is* x = 1 A1

A1

*non-vertical asymptote is* y = x + 1 A1

#### **Question 3** (3 marks)

a. 
$$E(4X-3Y) = 4E(X) - 3E(Y)$$
$$= 4 \times 30 - 3 \times 20$$
$$= 60$$
A1

**b.** 
$$Var(4X-3Y) = 16Var(X) + 9Var(Y)$$
 M1  
=  $16 \times 9 + 9 \times 4$   
=  $180$ 

## **Question 4** (3 marks)

$$\overrightarrow{AB} = 3\mathbf{i} - 2\mathbf{j} + (m+3)\mathbf{k}$$

$$|\overrightarrow{OC}| = 7$$
A1

Attempting to solve 
$$3^2 + (-2)^2 + (m+3)^2 = 49$$
 for  $m$ . M1  
 $m = -9$  or 3

#### **Question 5** (3 marks)

Use of 
$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$
 and  $\cot(x) = \frac{1}{\tan(x)}$  to obtain  $\frac{10\tan(x)}{1 - \tan^2(x)} = \frac{4}{\tan(x)}$ . M1

Attempting to simplify gives  $\tan^2(x) = \frac{2}{7}$ . M1

$$\tan(x) = \pm \sqrt{\frac{2}{7}}$$
 A1

## Question 6 (4 marks)

$$\int_{0}^{\frac{\pi}{6}} \frac{1 + \cos^{4}(2x)}{\cos^{2}(2x)} dx = \int_{0}^{\frac{\pi}{6}} \sec^{2}(2x) + \cos^{2}(2x) dx$$
 A1

$$\cos(4x) = 2\cos^2(2x) - 1 \Rightarrow \cos^2(2x) = \frac{1}{2} + \frac{1}{2}\cos(4x)$$
 M1

$$= \left[\frac{1}{2}\tan(2x) + \frac{x}{2} + \frac{1}{8}\sin(4x)\right]_0^{\frac{\pi}{6}}$$
 A1

$$=\frac{\sqrt{3}}{2}+\frac{\pi}{12}+\frac{\sqrt{3}}{16}$$

$$=\frac{27\sqrt{3}+4\pi}{48}$$
 A1

## Question 7 (5 marks)

**a.** 
$$\frac{d}{dx} \left( \frac{1}{5} e^{2x} (2\sin(x) - \cos(x)) \right) = \frac{2}{5} e^{2x} (2\sin(x) - \cos(x)) + \frac{1}{5} e^{2x} (2\cos(x) + \sin(x))$$
 M1

$$= \frac{4}{5}e^{2x}\sin(x) + \frac{1}{5}e^{2x}\sin(x) - \frac{2}{5}e^{2x}\cos(x) + \frac{2}{5}e^{2x}\cos(x)$$
 A1

So 
$$\frac{d}{dx} \left( \frac{1}{5} e^{2x} (2\sin(x) - \cos(x)) \right) = e^{2x} \sin(x).$$

$$\mathbf{b.} \qquad \int \frac{dy}{\sqrt{1-y^2}} = \int e^{2x} \sin(x) dx$$
 A1

$$\sin^{-1}(y) = \frac{1}{5}e^{2x}(2\sin(x) - \cos(x)) + c$$
 M1

When x = 0, y = 0 and so  $c = \frac{1}{5}$ .

$$y = \sin\left(\frac{1}{5}e^{2x}(2\sin(x) - \cos(x)) + \frac{1}{5}\right)$$
 A1

#### **Question 8** (5 marks)

$$(a+bi)^2 = a^2 - b^2 + 2abi$$
 and so  $a^2 - b^2 = 7$  and  $2ab = -6\sqrt{2}$ . M1 A1

Attempting to eliminate a variable, for example *b*: 
$$b = -\frac{3\sqrt{2}}{a}$$
 to form  $a^4 - 7a^2 - 18 = 0$ . M1

(Alternatively, eliminating variable a forms  $b^4 + 7b^2 - 18 = 0$ .)

Solving gives 
$$a = 3$$
,  $b = -\sqrt{2}$ ; that is,  $z = 3 - \sqrt{2}i$ .

And 
$$a = -3$$
,  $b = \sqrt{2}$ ; that is,  $z = -3 + \sqrt{2}i$ .

### Question 9 (5 marks)

Attempting to differentiate implicitly to obtain 
$$e^{-y} - xe^{-y}\frac{dy}{dx} + e^y\frac{dy}{dx} - 1 = 0$$
. M1

At the point 
$$(k, \log_e(k))$$
,  $\frac{1}{k} - \frac{dy}{dx} + k \frac{dy}{dx} - 1 = 0$ .

$$\frac{dy}{dx} = \frac{1}{k} \Rightarrow m_N = -k$$
, where  $m_N$  is the gradient of the normal.

The equation of the normal is  $y - \log_{\rho}(k) = -k(x - k)$ .

When 
$$x = 0$$
,  $y = \frac{2k^2 + 1}{2}$  and so  $\frac{2k^2 + 1}{2} - \log_e(k) = k^2$ . M1

So 
$$k = \sqrt{e}$$
.

#### Question 10 (5 marks)

**a.** 
$$1 - x^2 \ge 0$$
  
 $-1 \le x \le 1 \text{ but } x \ne 0$ 

The maximal domain of f is  $-1 \le x \le 1$ ,  $x \ne 0$ . **A**1

The maximal domain of 
$$f$$
 is  $-1 \le x \le 1$ ,  $x \ne 0$ .

All

b. 
$$f'(x) = \left(\frac{1}{1 + \frac{1 - x^2}{x^2}}\right) \left(\frac{-x^2(1 - x^2)^{\frac{1}{2}} - (1 - x^2)^{\frac{1}{2}}}{x^2}\right)$$

$$= \left(\frac{x^2}{x^2 + 1 - x^2}\right) \left(\frac{-x^2(1 - x^2)^{\frac{1}{2}} - (1 - x^2)^{\frac{1}{2}}}{x^2}\right)$$

$$= x^2 \left(\frac{-x^2}{\sqrt{1 - x^2}} - \sqrt{1 - x^2}\right)$$

$$= \frac{-x^2}{\sqrt{1 - x^2}} - \sqrt{1 - x^2}$$

$$= \frac{-x^2}{\sqrt{1 - x^2}} - \sqrt{1 - x^2}$$

$$= \frac{-x^2}{\sqrt{1 - x^2}} - \sqrt{1 - x^2}$$

$$= \frac{-x^2 - (1 - x^2)}{\sqrt{1 - x^2}} \text{ and so } f'(x) = -\frac{1}{\sqrt{1 - x^2}}$$
A1