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SECTION A — MULTIPLE-CHOICE QUESTIONS
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Question 1 C

-1 <sin(x) < 1 and so, —% <sin(x)-=<

N =
NS

Given that 0 < < % , the maximum value of g is %

sin(x) —%

Alternatively, a CAS could be used to graph of y = g(x) and the maximum value obtained from the graph.

Question 2 E
The range of y = cos_l(x) is0<y< 7.

From the graph, the range of y = acos™" ()—C - 1) is0<y<10.

5
So, ar= 10:>a:19.
T

Question 3 A
The range of fis2 <y < cc.

Interchange x and y and solve for y:

X = secgj +1

Question 4 D
z3 - 312 +z—-3=(z-3)(z-i)(z + i) either by using a CAS or by using by-hand factorisation (see below).
23 +7-3=75(z-3)+ 1(z=3)

= (z=3)(+1)

=(z-3)(z—1i)(z+1Q)

So, a linear factor of P(z) is z + i.

Question 5 B

The set, S, consists of all points in the complex plane that are equidistant from 0 and —a.

In the Cartesian plane, this set corresponds to the perpendicular bisector of the line segment joining (0, 0)

and (-a, 0).
a

The midpoint of the line segment is [—2, Oj and so the equation of the perpendicular bisector is x = —g ; that

is, Re(z) = —g.
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Question 6 B
Using de Moivre’s theorem obtains rncis(n 0) =rcis(a).
1

Comparing moduli, obtains 7' = rp=>r=(r 1)”.
Comparing arguments, obtains cis(n 8) = cis( ).
n@ =a+2kx where k € Z.

0= rlz( o+ 2kr)

1
So, (rl)ncis(’%(a + Zkﬁ)J .

Question 7 D
One approach is to use the expand command of a CAS.
x-3 —3x 1 3 1

= —_ + —
=127 +1) 27 +1) 27 +1) 2(x=1) (x=1)

The RHS can be expressed as:

_3x — 1
3§ ! + 3 — —, which is of the form A + B 2+C)26+D.
2(x"+1) 2(x-1) (x=1) x=1 (x=1)" x"+1

Note the following:

If the factor in the denominator is (ax + b)", then the corresponding term(s) in the partial fraction

A ) A
decomposition is + S ———

ax+b (ax+Db) (ax+b)
3 1

2x-1) (x-1)>

n

Here (x — 1)2 corresponds to

If the factor in the denominator is ax™ + bx + ¢, then the term in the partial fraction decomposition

. Ax+B
is ————.
ax +bx+c
Here ()c2 + 1) corresponds to #
2%+ 1)
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Question 8 B
z z
6 ju r6
J' cot(i — Zx) dx= ] tan(2x)dx
0 Yo
z
rO .
| “sin(2x)
- cos(2x)dx
Yo
If u = cos(2x), then du _ —2sin(2x) and so sin(2x) = —1@
dx 2dx
V4 1
Whenx=0,u=1 andwhenx:E,u=§.

1
2 1 1 1
Soweobtain —| —du=| —du.
2u 12u
! 3

Alternatively, the substitution u = sin(ir - Zx) can also be used.

2
Question 9 C
A:4ﬁr2:r:P
4
V:%lm"3
3
_dnfa)
3 \4nx
3
1 2

=—A
67

av_1[a
dA ™ 4N 7

dv_dv, da
dt ~ dA " dt
_1[ada
T 4N 7 dt

Question 10 C

At (0, 0), %; =0, and so A is not correct.

At (-1, 1), ZQ) =0, and so B, D and E are not correct.
X
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Question 11 E
Let the arc length be L.
b
2
L= j H(@J .
a dx
dy _ cos(x/x)
dx 2«/}?
2 2
fdy) _cosTx
ldx ) T 4x b

d
2[
Substituting this into the arc length formula gives L = 1 4+ SO8 ~X dx.
4x
a

Question 12 D

If the number of people who have been infected is P, then the number of people who have not been
infected is N — P.

So, %}; = k(P(N - P)) = kP(N - P).

Question 13 A

The most efficient approach is to use a CAS differential equation solver feature.

Solving Zl% =4 - y2 with y{%r} =1 gives sinlgj —g =x —g (or equivalent).

Solving sin”! (%J - g =x —g for y gives y = 2sin(x).

1

A/4—y2

find the value of ¢ and then re-arranging to express y in terms of x.

A by-hand approach requires solving Z——; = to obtain x = sin_lej + ¢, using the given condition to

Question 14 A

The particle’s direction of motion is given by the unit vector in the direction of the velocity vector.

r'(1) = sec” (1)i + 2tan(t)sec” (1)

17 2 secl Z i 4 2tanl Zlsec Z 1
£4 = S€C 4l+ an4sec 4l

=2i+4j
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Question 15 E
% . . % . .
RS=i1-2j+k and RT=2i+(m—-1)j +nk
~ ATy ST AR
As R, S and T are collinear, RT = ARS where A is a scalar.
So2i+(m-1)j+nk=A>i-2j+k).
Equating the i coefficients we obtain 4 = 2.
Equating the j coefficients we obtain m — 1 =24 and so m = -3.

Equating the k coefficients we obtain n= A and so n =2.

Question 16 C

The resultant force is:

F, +F, =6i~—8j—10i~+24j
=-4i + 16j (N)

a=3(~4i +16))

=—i+4j (ms )

lal = J(=1)" + (4)°

= J17 (ms %)

Question 17 E
Let R newtons represent the reading on the scales.
R—-80g =80a

R=80(g+1)

Question 18 B
In the horizontal direction: 7cos(8) = Fand so T > F.
In the vertical direction: N + Tsin(#) = Wand so N < W.

Question 19 D

An approximate 95% confidence interval for u is [)_C -1.96 %, X+ 1961} )
n n

So in this instance an approximate 95% confidence interval for u is

[15.8 1.96 ___“2'1, 15.8 + 1.96 x —-—“le that is, (14.6, 17.0).

Question 20 A
E(D)=80-2x 54
=-28
var(D)=7> + 4 x 5°
=149
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SECTION B

Question 1 (9 marks)

a. The range of fisO<y<1. Al
2
b.  f'(x)= 2’6—‘15 Al
o+ 1)
c. Attempting to solve f"(x) = O for x. M1
2
S =—.
0, x=>
(2] e
2 3
So, the coordinates are (#, ?] Al
d. Let the volume be V.
3
V.= J' ! dx M1
2
0 1+x
72_2
So, V.= 5 Al
e. Let the volume be Vy. .
When x =0,y =1 and when x= /3,y = 5.
y2= 1 2:>x2=i2—1 MI
1+x y
1
v,= j (1 1}1 M
y- 2
1\y
2
T
So, Vy =5- Al
Question 2 (11 marks)
a. Method 1:
Considering (x — c)(x + q) + r = (x — a)(x — b). M1
Putting x = ¢ gives r = (¢ — a)(c - b). Al
Considering the coefficient of x we obtain ¢ — ¢ = —(a + b).
So,g=c—a-b. Al
Method 2:
Use the proper fraction command of a CAS. M1
g=c—-a—-bandr=(c—a)c->b) Al Al
Copyright © 2018 Neap SMUB4EX2_SS_2018.FM 7



VCE Specialist Mathematics Units 3&4 Trial Examination 2 Suggested Solutions

b. i. The vertical asymptote is x = c. Al
ii. The non-vertical asymptote is y=x + c —a — b. Al
¢  flx)=1-—2L M
2
(x—c)

Solving f'(x) =0 = x=c +./r.

Asr=(c—a)c—b)then x=c+ J(c—a)(c-D). Al
Asc>b>a>0,then (c —a)(c-b) >0, and so there are two real roots. Al
Hence the graph of y = f(x) has two stationary points.

d.
A

|

|

: y =fx)
\@ 0 (b, 0)_—=7
X

—
—

> X

two correct branches with correct asymptotic behaviour Al
the non-vertical asymptote crossing the positive y-axis Al

(a, 0), (b, 0) and (0, _a_b) Al

c
Question 3 (12 marks)
a. R
90g Al
b. At terminal velocity, XF = 0.
So, k(60)* = 90g. Al
8
H ==
ence, k 10
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dv g 2
. < - Al
c 90vdx 90¢g 4Ov
J‘ 90vg 2dv=jdx Ml
90g - 10"
1800 g 2
2 loge90g—4—0v =x+c Al
_8x
_ 8 2 _ 1800
90g 10" Ae
gx
240 ~1800
v = (—g—[90g —Ae ISOOJ Al
When x =0, v=0 and so, A =90g. M1
_8x
Hence, v° = 3600[1 —e ‘SOOJ.
d  v=604J1-¢"*
So, v=159.9983 m/s (correct to four decimal places). Al
dv
. 90— =90g - 90 Al
e o g v
Let 7, be the time taken for the parachutist’s velocity to decrease to 20 m/s.
20 1
J‘ _dV = I dl’ Ml
g-v
59.9983 0
Attempting to solve the equation for 7. M1
So, t; = 1.59 s (correct to two decimal places). Al
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Question 4 (10 marks)

a. VX=I0dt3vx=cx

When =0, v, = Vcos(6) and so ¢ = Vcos(0).
Sov_ = Vcos(0). Ml

X = I(Vcos(&))dt = x=Vcos(O)t+d,

When =0, x=0 and so,dx=0.
Hence, x = Vcos(0)t. Al

vy=J'—gdt:>vy:—gt+cy

When 1 =0, vy, = Vsin( @) and so, ¢y = Vsin( 9).
So vy = Vsin( 9) — gt. M1

y= J(Vsin(e) _gt)ydt=> y = Vsin()t - %gtz +d,

WhentzO,yanndso,dy:O.
Hence, y = Vsin(8)t - %gtz. Al

Given that r = xi + yj we obtain r = (Vcos(0)t)i + [Vsin(&)t - %gtzjj .

b.  The parametric equations are x = Vcos( )t and y = Vsin(8)t — % gtz. Al

Substituting £ = —>— into y = Vsin(0)t — ~g¢> gives

£f= Vcos(6) y= ) 28" 8
. X 1 X
y = Vsin(0) Veos(8) | ~ 28| Veos() | - Ml
2
So, y =tan(f)x — ____g_x_a___ .
2V2COS ()
c. As the particle just clears the first wall we can take (2, 2) as a point on the path.
2 4
Using y =tan(@)x — % we obtain 2 = 2tan(55°) — > (g; . M1
2V7cos () 2V cos (55°)

Attempting to solve for V.

So, V=28.341 ms_1 (correct to three decimal places) Al
d.  To find the position of the second wall we need to find the other value of x for which y =2

and V=28.341.

2
Attempting to solve 2 = 2tan(55°) — gzx 5 for x. M1
2(8.341) cos™(55°)
So the second wall is 4.7 m (correct to one decimal place) from O. Al
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Question 5 (8 marks)

. 64
a. X~ N(?)S, Tbﬁj

Pr(type I error) = Pr(X > 36.5) Ml
=0.0304 (correct to four decimal places) Al

b. i Pr(type II error) = Pr(accept HO|H | 18 true)

=Pr(X<36.5 |,u =37.9) Ml
- S 64

=Pr(X <£36.5) when X ~ N|37.9, 100 Al
=0.0401 (correct to four decimal places) Al

. x-379 x-35
11. W = —[ 08 J Al
Attempting to solve this equation for X . M1
X =36.45 Al

Question 6 (10 marks)

a. Substituting z = x + yi into the quadratic equation gives:

(x+yi) +b(x+yi)+1=0 M1
x2—y2+2xyi+bx+byi+1:0 Al
Considering the real part we obtain X - y2 + bx + 1 = 0 and considering the imaginary part
we obtain 2xy + by =0 and so (2x + b)y = 0. Al

b. 2x+b)y=0=y=00rb=-2x Al
Substituting y = 0 into x* — y* + bx + 1 = 0 gives x> + bx + 1 = 0. Ml

2
Pabxr1=0=b=2T1 20 Al

X

c. i.  Whenb=-2x, we obtain x> —y> + 2x> + 1 = 0.

Soxt+y =1. Al
ii. a circle of radius 1 and centre (0, 0) Al
2 2
d i Whenb=-2TF 1,x¢0,weobtainx2—y2+(_x ; 1)x+ 1=0=y2=0.
So,y=0,x = 0. Al
ii. The x-axis with the point (0, 0) excluded. Al
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