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Question 1 (3 marks)

correct shape (concavity and asymptotic behaviour) A1
y-coordinate and stationary point is (0, 1.25) A1

horizontal asymptote is y = 1 A1

Question 2 (3 marks)

The parametric equations are x = 2 – t2 and y = 4t.

Use  to obtain . M1

Let the gradient of the normal be mN.

When t = 1,  and so, . M1

When t = 1, x = 1 and y = 4.

So, . A1

Question 3 (3 marks)

Let X represent the weight of the lemons.

X ~ N(58, 92)

, that is,  and 

Question 4 (3 marks)

The equations of motion are T = 3ma and 2mg – T = 2ma. A1

M1

Solving for T gives . A1
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Question 5 (5 marks)

It is given that x3 + xy
2 – y3 = 2.

Using implicit differentiation obtains M1 A1

A1

So, x = y = 0. A1

Formal verification (that is the substitution of x = 0 and y = 0 into x3 + xy
2 – y3 = 2) shows that

(0, 0) is not on C. M1

Hence, there is no point on C at which 

Question 6 (5 marks)

The equation to solve is z3 = –2 + 2 i.

M1

A1

A1

Adding or subtracting  to obtain the other two solutions:

A2

Question 7 (3 marks)

The question asks to prove that 

OPQ = 90° and so M1

 and , so A1

 (dot product is distributive) A1

So 
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Question 8 (5 marks)

a. It is given that .

Method 1:

 and so 

M1

A1

When x = 0, v = 0 and so c = 0.

So A1

Method 2:

 and so 

M1
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When x = 0, v = 0 and so c = 0.

So A1
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Question 9 (5 marks)

a.

Leading to 

b.
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Question 10 (5 marks)

Solve  for x where x  0.

Method 1:

Apply cos to both sides of the equation  to obtain:

A1

Use of cos(A – B) = cos(A)cos(B) + sin(A)sin(B) on the RHS to obtain:

M1

So, the equation becomes A1

Squaring both sides gives: 4x
2 = 1 – x2. M1

Solving this equation gives:

A1

Method 2:

Apply cos to both sides of the equation to obtain:

A1

Use of cos(A + B) = cos(A)cos(B) – sin(A)sin(B) on the LHS to obtain:

M1

So, the equation becomes A1

Rearranging and squaring both sides gives: 4x
4 = 4x

4 – 5x
2 + 1. M1

Solving this equation gives:
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