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Question 1 (2 marks) 
 

Evaluate 
6

2

0

cos (3 )x dx



 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 2 (3 marks) 
 
Given the relation 5y 2x 2y  x  7, find the equation of the tangent to the graph of this 
relation at the point (1,2) . 
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Question 3 (3 marks) 
 
The weight of eggs produced at a free range farm varies normally with a mean of 68 g and a 
standard deviation of 4 g. 
These eggs are sold in boxes which contain 16 eggs. 
Find, correct to four decimal places, the approximate probability that the mean weight of an 
egg in a randomly selected box is less than 65 g. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 4 (3 marks) 
 
Find the value of a given that z  2 i  is a solution to the equation 
z 3  7z 2  (a2 1) z  (4a 1)  0, where a is a real constant. 
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Question 5 (5 marks) 
 
Consider the three vectors 

~ ~ ~ ~ ~ ~~ ~ ~~ ~ ~
a = i +2 j+2k , b =2 i +3 j+ k  and c= i 2 j+2kd   where d is a real 

constant. 
 
a. Find a unit vector in the direction of 

~
c . 1 mark 

 
 
 
 
 
 
 

b. Find the vector resolute of 
~
a  perpendicular to 

~
c . 2 marks 

 
 
 
 
 
 
 
 
 
 

c. Find the value of d if the three vectors are linearly dependent. 2 marks 
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Question 6 (4 marks) 
 
Solve the differential equation  
 

 1

x

dy

dx
 4  y 2

4  x 2
,   given that (2) 3y  . 

 

Express your answer in the form y  a cos b c  x 2

 


 where a, b and c  R . 
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Question 7 (3 marks) 
 
The velocity v, in ms-1, of a 5 kg mass is given by v  4 arccos (2x 2 1)  where x, in metres, is 
its displacement from the origin and x  0. 
Find the net force F, in newtons, acting on the mass in terms of x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

 
© THE HEFFERNAN GROUP 2018                                Specialist Maths 3 & 4 Trial Exam 1 

Question 8 (5 marks) 
 

Let : ( , 4] , ( ) ( 1) 4f R f x x x     . 
 
S represents the region enclosed by the graph of f and the x-axis. 
 
a. Find the area of S. 3 marks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. The region S is rotated around the x-axis to form a solid of revolution. Find the 
volume of this solid of revolution. 2 marks 
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Question 9 (4 marks) 
 

A curve is defined parametrically by 2 4  and 2 4x t y t    . 
Find the length of this curve from t  2 to t  4. 
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Question 10 (8 marks) 
 
a. Sketch the graph of f (x)  2arctan(3x)  on the set of axes below. 

Label any asymptotes with their equations. 2 marks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Find the rule and the domain of the inverse function f 1. 2 marks 
 
 
 
 
 
 
 
 
 
 
 

 

x

y
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c.           Find tan
x

2







dx . 1 mark 

 
 
 
 
 
 
 
 
 
 

d.          Hence find the area enclosed by the graph of f, the x-axis and the line x  1

3
. 3 marks 
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Specialist Mathematics Formulas 
Mensuration 
 

area of a trapezium hba )(
2

1
  

curved  surface area of a cylinder rh2  

volume of a cylinder hr 2  

volume of a cone hr 2

3

1  

volume of a pyramid Ah
3

1
 

volume of a sphere 3

3

4
r  

area of a triangle )sin(
2

1
Abc  

sine rule 
)sin()sin()sin( C

c

B

b

A

a
  

cosine rule )cos(2222 Cabbac   

 
 
Circular functions 
 

1)(sin)(cos 22  xx   

)(sec)(tan1 22 xx   )(cosec1)(cot 22 xx   

)sin()cos()cos()sin()sin( yxyxyx   )sin()cos()cos()sin()sin( yxyxyx   

)sin()sin()cos()cos()cos( yxyxyx   )sin()sin()cos()cos()cos( yxyxyx   

)tan()tan(1

)tan()tan(
)tan(

yx

yx
yx




  
)tan()tan(1

)tan()tan(
)tan(

yx

yx
yx




  

)(sin211)(cos2)(sin)(cos)2cos( 2222 xxxxx 
 

 

)cos()sin(2)2sin( xxx   
)(tan1

)tan(2
)2tan(

2 x

x
x


  

 
Mathematics Formula Sheets reproduced by permission; © VCAA 2017. The VCAA 
does not endorse or make any warranties regarding this study resource. Current and 
past VCAA VCE® exams and related content can be accessed directly at 
www.vcaa.vic.edu.au     
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Circular functions – continued 
 

Function 1sin  or  arcsin  1cos  or  arccos  1tan  or  arctan  

Domain ]1,1[  ]1,1[  R  

Range 





2
,

2


 ],0[   








2
,

2


 

 
 
Algebra (complex numbers) 
 

)cis())sin()(cos( θrθiθriyxz    

ryxz  22
  )(Arg z  

)(cis 212121 θθrrzz   )cis( 21
2

1

2

1  
r

r

z

z
 

)cis( nrz nn     (de Moivre’s theorem)  

 

 
Probability and statistics 
 

for random variables X and Y 

)(var)var(

)(E)(E)E(

)(E)E(

2 XabaX

YbxabYaX

bxabaX






 

for independent random variables X and Y )var()(var)var( 22 YbXabYaX   

approximate confidence interval for μ  









n

s
zx

n

s
zx ,  

distribution of sample mean X   
n

X

μX
2

   varvariance

)(E    mean      





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Calculus 

  1 nn nxx
dx

d
  


  1,

1

1 1 ncx
n

dxx nn
 

  axax aee
dx

d
  ce

a
dxe axax 

1
 

 
x

x
dx

d
e

1
)(log   cxdx

x e  log
1

 

  )cos()sin( axaax
dx

d
  cax

a
dxax  )cos(

1
)sin(  

  )sin()cos( axaax
dx

d
  cax

a
dxax  )sin(

1
)(cos  

  )(sec)tan( 2 axaax
dx

d
    cax

a
dxax )tan(

1
)(sec2

 

 
2

1

1

1
)(sin

x
x

dx

d




 0,sin
1 1

22










 ac

a

x
dx

xa
 

 
2

1

1

1
)(cos

x
x

dx

d






 0,cos
1 1

22











  ac
a

x
dx

xa
 

 
2

1

1

1
)(tan

x
x

dx

d




 c
a

x
dx

xa

a










 1

22
tan  

 

 


  1,)(
)1(

1
)( 1 ncbax

na
dxbax nn

 

 

   cbax
a

dxbax elog
1

)( 1
 

product rule 
dx

du
v

dx

dv
uuv

dx

d
)(  

quotient rule 
2v

dx

dv
u

dx

du
v

v

u

dx

d










 

chain rule 
dx

du

du

dy

dx

dy
  

Euler’s method , and ),( If 00 byaxxf
dx

dy
 )( and  then 11 nnnnn xhfyyhxx    

acceleration 





 2

2

2

2

1
v

dx

d

dx

dv
v

dt

dv

dt

xd
a  

arc length   
2

1

2

1

222 )('))('(or            ))('(1
t

t

x

x

dttytxdxxf  

Vectors in two and three dimensions   Mechanics 

~ ~~ ~
r i j kx y z    

rzyxr  222
~

 

~

~ ~ ~~

r
r i j k

d dx dy dz

dt dt dt dt
     

1 2 1 2 1 2 1 2 1 2
~~

r .r cos( )r r θ x x y y z z     

 

momentum ~~
p vm  

equation of motion ~~
aR m  

 


