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Trial Examination 2017

VCE Specialist Mathematics Units 3&4

Written Examination 2

Suggested Solutions

SECTION A — MULTIPLE-CHOICE QUESTIONS

1 [a] [g] [c] [o] [€] 11 [a] [B] [c] [p] [E]
2 [a] [8] [c] [B] [€] 12 [a] [8] [c] [o] [E]
s [a] [B] [c] [p] [g] 13 [a] [B] [c¢] [o] [E]
4 [a] [] [c] [o] [E] 14 [a] [e] [c] [o] [E]
5 [a] [8] [c] [p] [E] 15 [a] [B] [c¢] [o] [E]
6 [a] [8] [e] [o] [€] 16 [a] [&] [e] [o] [E]
7 [a] [8] [¢] [p] [€] 17 [a] [8] [c] [o] [E]
s [a] [8] [c] [B] [g] 18 [a] [B] [c¢] [o] [E]
o [a] [e] [c] [B] [E] 19 [a] [] [c] [o] [E]
10 [a] [&] [c] [o] [E] 20 [a] [e] [e] [p] [E]
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VCE Specialist Mathematics Units 3&4 Trial Examination 2 Suggested Solutions

Question 1 A
The vertical asymptote is x = 0.
As x > Foo, f(x) > b andsoy > g(x)+ b.

So y = g(x) + b is a straight-line asymptote.

Question 2 D
y=-sec(x+2)-3

1
y= cos(x+2)

Considering the graph of y = —sec(x + 2) — 3, vertical asymptotes occur wherecos(x + 2) = 0.

x+2=02k- l)g:x =(2k- l)g— 2 where k is an integer.
So the implied domain is R\{(2k - l)g— 2}.

Question 3 B

Solving |2xarccos(x)| =1 for x gives x =-0.271, 0.455, 0.820.
So -1 <x<-0.271 or 0.455 <x<0.820.

Question 4 D

x+yi:(a+bi)2

=a’ +2abi— b’

Equating coefficients gives x = a* - b and y =2ab.

Question 5 E

l3)-
Arg(z) - Arg(7) =%

2Arg(z) = §[=> Arg(z) = g
Question 6 C

Re(z) + Im(z) = 1 = x + y = 1 and it does not pass through the origin

2+ Z7=1=>x= % and it does not pass through the origin

Re(z) —Im(z) =0 = x—y =0 and it passes through the origin. So C is correct.

For completeness:
7z =1 is a circle with centre O and radius 1.

Re(z)Im(z) =1 = xy =1 and it does not pass through the origin.
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Question 7 C
The most efficient way to perform the implicit differentiation is by use of a CAS.

x2—4xy + 2y2 =-2

dy 2y-x
dx 2(y-x)
Alternatively:

2x — 4(y+xdx)+4ydy 0

dy 2y-x
dx  2(y—x)

Tangents parallel to the x-axis will satisfy 2y —x=0=y= %

(4y—4x) —4y 2x = —

Question 8 D
The two curves intersect at x = — .

Let the volume be V. ﬁ

.j’i 2
T
J 27\
0
L
oﬁ 2
=7 cos_l(x)dx _
. 4.2
0
Question 9 D

dr
Gi —=-0.2.
iven —

A=nr 2 = 6—1—4 =27r
dr
As C=2nr, ? =C.
dA _dA _dr dA
Using T ar X — T we obtain = -0.2C.

Question 10 E
Given x = sin (t) and y = cos (t) for 0<¢
Let the path length be L.

6
dx dy
=] &) (&)
) ) G @
0

T

cma

6
- J(s sin(1)cos (1)) + (=3 cos X(£)sin (1)) dt
0

T

= «/9sin4(t)cos2(t) + 9cos4(t) sinz(t)dt

n
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Question 11 B

Vertical segments will occur when 2x+y=0=y=-2x.

Question 12 E

®) a‘b

COS = S

|2 [b]
1 (+j+pk)-(2i+2j-k)
: J2+4p°.J0
1__4-p
3=

3424 p°

Solving for p we obtain p = Azl .

Question 13 A

3
1 2
J‘ «/ (4e l) + (sin(1 + t))zdt = 1.642 (m) (correct to three decimal places) and so option A is correct.
1

Question 14 A
— 1 — 1
AM = 5(13— a) and OM = 5(13 +a)

— — ] — —> ]
AM-AM=Z(b-b-2a-b+a-a) and OM - OM=(b-b+2a-b+a-a)

AM2+0M2=%@»§+9-@
:%(0A2+OB%

So 0A%+ OB*=20M% +24M°.

Question 15 B
The two stones collide when 28t = 35cos (&)t = cos(a) = 45—1 .

-4
so a=cos (2).
0O = COs 5

Question 16 C

Use of a differential equation solver to solve 2vzll—; =2- 8v2 where v =0 at x =0 gives v2 = %(1 - e_8x) .
F=2-8/

=2-2(1-¢ %

_ 26—8x
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Question 17

A

Resolving forces vertically:

7 4
Fy_30><§§+22><§—26
=0 (N)
Resolving forces horizontally:
24 3
Fx_30><§§—22x§
=15.6 (N)
|ZF| =15.6 (N)
Question 18 B

A test to determine whether a new diet promotes weight loss is the only one-sided test presented in

the options.

Question 19

E
2.5

E(X)=21 and sd(X) = ==

2

o 2.5

X~ N(Zl, —
20

20

)

Pr()_( > 19.8) = 0.9841 (correct to four decimal places)

Question 20

. . . L - s
An approximate C% confidence interval is given by (x —Z—,X+z

Pr(—z<Z<z):£

The width of an appropriate confidence interval is x + z

C
iy) where z is such that

o

100°
s (-

T (x—z%@) =2zﬁ.

The width of this confidence interval is 13.3 —12.4 =0.9..

Solving 0.9 =2 % 08 x z for z gives z=1.778...
J10

C=100Pr(-1.778... < Z< 1.778...)

=925

The confidence level is 92.5%.
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SECTION B

Question 1 (12 marks)

a.

The vertical asymptotes are x = £2.

3
4x—a

f(x)=x+

x -4

The non-vertical asymptote is y = x.

. L (=B = (=) 20 [ (- 12x+24°)
i = — =B
(x"-4) (x"-4)
f’(x) =0 when x =0 (and so f has a stationary point at x = 0)
a3
ii. f(x) = T
a3
T >( for a>2 and so x =0 is a local minimum
3 3 2 3
Solving x” —a” =x(x~ —4) forx gives x = %.

So the graph crosses the non-vertical asymptote.

A

Al

M1

Al

M1

Al

M1

Al

MI1 Al

three correct branches with correctly labelled asymptotes Al

the graph crossing the non-vertical asymptote Al

Question 2 (9 marks)

3
(0, %) and (a, 0) Al

a. F=75+90cos(30°) Al
=153 (N) (correct to the nearest newton) Al

b. R +90sin(30°) = 60g M1
R =543 (N) Al
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c. Using Newton’s second law, we obtain —150 = 60a.

a=-25 (m/s) Al
v
dv v
=-2. = | = Ml
dx S=>x= J‘ 2.5dv
1.5
x=0.45 (m) Al
d. Using Newton’s second law, we obtain 190 — 145 + Pcos(30°) = 180. M1
Solving for P, we obtain P = 156 (N) (correct to the nearest newton). Al

Question 3 (12 marks)

a. LHS :(COS(H)+isin(é’))z—Zcos(G)(cos(ﬁ)+isin(é’))+ 1 M1
= 2c0s () + 2isin(0)cos(8) — 1 —2cos(8) — 2isin()cos () + 1 Al
=0 (=RHS), and so z = cos(#) + isin() is a solution to the equation Al

b. 7+ in = cos(n@) + isin(nf) + cos(—nf) + isin(-nd) Al
Z

= cos(n@) + isin(nf) + cos(nf) —isin(nd)
=2cos(nb) Al
c. Method 1:
3 2 1 2 1 3 1
8cos (@) +4cos (8)—4cos(H) -2 = (z + —) + (z + —2) + (z + —3)
< z Z
1 12
+=-=2cos(0) and so LHS = 7+=] +|lz+- Al
Z Z e
:(z3+3z+ +1)+(zz+2+—1—)—2(z+1)—2 M1
3 2 z
=(z3+i)+(z2+l)+3(z+l)—2(z+l) Al
3 2 z z
z z
(oD
=\< E Z > Z 3
Z Z
= RHS
Method 2:
80 (6) + 4cos () — 4cos(8) — 2 = (4cos(8) — 2)(2cos(8) + 1) Al
1 2 1 1
+ -=2cos(#) and so LHS = Z+—i Z+E+1 Ml
Z
z
=7 +z +z+1+i+l Al
z 2 3
.z
_( ) ( 2 1 3 1)
—Z+—+Z+—§+Z+—§
Z
= RHS
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d. Method 1:
cos(8) + cos(26) + cos(36) =0 = %[(Z + 9 + (Zz + lz) + (Z3 + l3)} =0

Z Z

So %(4cos2(9)—2)(2cos(9)+ 1)=0 Al
Attempting to solve cos(6) = % [ ,(cos(8)=—= or cos(268)=0). M1
0= 237[4” (from cos (@) = ) Al

_m3rx5wix 1

pa i + =

i (from either cos(8) = 7 or cos(268)=0) Al
Method 2:

cos(8) + cos(260) + cos(360) =0 = cos(20-6) + cos(28) + cos(260+ 0) =

cos(28)cos(8) + sin(20)sin(f) + cos(28) + cos(28)cos(O) — sin(28)sin () =

2cos(268)(2cos(8)+1)=0 Al

Attempting to solve cos(8) = —% or cos(26)=0. M1

0= 23”4” (from cos(8) = A ) Al
E3ﬂ5ﬁ7ﬁ

0= RTRIE (from cos(26)=0) Al

Question 4 (9 marks)

dN

a. i =kN(2000 - N) Al
Solving 25 = (50)(2000 — 50)k for k gives k = 39100 M1
dN N
0o — a1 = m(ZOOO N)
dN _
b. Attempting to solve — =7 =390 0(2000 N), (=0, N =50) to obtain N in terms of ¢. Ml
201
39
N= % (or equivalent) Al
39
e +39 20[
ZOOOe .
Solving 1500 = ———— for ¢ gives 279 days (correct to the nearest day). M1 Al
e + 39
dNn . .
c. T is a maximum when N = 1000 . Al
201
2000 .
Solving 1000 = ———— for t gives 214 days (correct to the nearest day). M1 Al
e g +39
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Question 5 (6 marks)
a.  LetX~N(12, 2.7% and Y ~ N(20, 4.4°).

T= . :>E(T)=E(

5

E(T) = é(?)E(X) +2E(Y))

= %(3(12) +2(20))
=152 Al
X +X,+X3+Y,+Y,
var(T) = var
5
= %(3var(X) + 2var(Y))
5
= L3027 +2044%)
2
5
=2.4236... Al
Pr(T < 14) = 0.220 (correct to three decimal places) Al
b. Pr(]JX-Y|<5)=Pr(-5<X-Y<5) M1
X—Y~N(12-20,2.7% +4.4% Al
X —Y~N(-8, 26.65)
Pr(|X — Y] £5) = 0.275 (correct to three decimal places) Al
Question 6 (12 marks)
a. m = tan(&) and y = mx Al
Hence y = tan(&)x.
g 2 2
b. At P, tan(o)x = tan(6)x — —2(1 + tan (6))x
2V
Solving this equation for x gives:
2 . .
= 2V cos(8)(cos(ax)sin(@) — sin(ar)cos(8)) (or equivalent) M1
gcos()
x = Rcos(&) and cos()sin(f) — sin(a)cos(0) = sin(0—- @) Al
—R= 2V251n(9—20{)cos(6) Al
gcos ()
Copyright © 2017 Neap SMUB4EX2_SS_2017.FM 9
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dR _2V*(cos(6)cos (6~ @) = sin(O)sin0- D) (o1 equivaent

c. i. Ml
o~ gcos (0{)
dR . .
@=O:>cos(6)cos(6— o) —sin(@)sin(0—a) =0 Al
@, r
cos(20-a)=0= @= 5 1 (or equivalent) Al
2
i, 5_1__1_2 -4 V (sin(8)cos (8- 0{) + cos(0)sin(f— «)) (or equivalent) M1
d 62 gcos (0{)
2 2
T —
When&-—‘;—{ Z,M:—-iz‘f——. Al
de gcos ()
4V d°R o, r
As ———— >0, then — < 0 and so R is a maximum when €= = + = (or equivalent). Al
2 2 2 4
gcos (o) de
d. Let m, be the gradient of the projectile’s initial direction at O and so m, = tan(0).
2
fi-)_; ___2cos (@) M1
dx  2sin(@)cos(8)
L _sin®) _2cos’(6)
O"P ™ cos(@) " 2sin(6)cos(0)
=_1 Al
So the initial direction of the particle’s trajectory is perpendicular to the direction at which
it hits the inclined plane.
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