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VCE Specialist Mathematics Units 3&4

Written Examination 2

Suggested Solutions

SECTION A – MULTIPLE-CHOICE QUESTIONS
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Question 1 C

From  the graph has two straight-line asymptotes, namely x = 0 and 

The equation  has no real solutions and so the graph has no stationary points.

Question 2 E

Consider the graphs of  and 

The graph of y1 has been dilated by a factor of 4 from the y-axis to form the graph of y2.

For example, the point (1, 3) is transformed to (4, 3).

Question 3 E

The turning points of the graph of y = sec(x) occur at x = 0, π and 2π for 

Hence the turning points for the graph of  occur at  and 

That is, 

Question 4 B

The repeated factor (x – 1)2 must be re-expressed as the sum of two fractions. Hence we can disregard 
options C, D and E.

The quadratic factor (x2 + 16) must be re-expressed as a fraction with a linear factor in the numerator. Hence 
we can disregard option A.

Question 5 A

Equating the two expressions for uv we obtain  

 and 

Question 6 C

Substituting for  and z we obtain 

Question 7 C

Options A, B, D and E all represent circles. Option C represents an ellipse with foci (2, 0) and (–2, 0).
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Question 8 B

 (this can be obtained directly with CAS)

If y2 – xy = –4, 

So LHS ≠ RHS and there are no stationary points.

For a tangent parallel to the y-axis to exist, we require 2y – x = 0. 

Substituting  into  gives 

Solving  for x gives x = ± 4; that is, 2 tangents.

Question 9 B

f(x) = 3x5 – 5x3

So  and  

The graph of f is concave up for values of x such that  

Solving  for x gives  or 

Question 10 C

Solving  for x with x > 0 gives x = 2.
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Question 11 D

So when the trough is one-quarter full, V = 3.75 (cubic metres).

Substituting  into  gives 

Solving  for h with h > 0 gives 

Question 12 E

Let the arc length be L.

Question 13 D

When t = 0, T = 15.

The differential equation is  

Question 14 A

Let d be the distance travelled by the particle.

So the distance travelled is 30 metres.

Let s be the displacement of the particle from its starting point.

So the displacement from the starting position is 20 metres.
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Question 15 D

A unit vector in the direction of  is 

Hence a vector with a magnitude of 7 parallel to  is 

As  the required vector is 

Question 16 B

 and 

Let θ be the required angle.

So the angle between  and  is 45°.

Question 17 A

Resolving forces parallel and perpendicular to the plane we obtain R = 40cos(20°) and F = 40sin(20°).

Question 18 E

Let R be the resistance to the motion of the trailer.

1600 – 400 – R = 1200 × 8

So R = 240 (newtons).

Question 19 A

Let W be the total weight of the 12 raspberries.

E(W) = 12 × 10 = 120 and var(W) = 12 × 1.52

So W ~ N(120, 12 × 1.5
2
) and Pr(W  > 130) = 0.0271. 

Question 20 B

The p-value for a two-sided H1 is twice the value for a one-sided H1. 

So the new p-value is 2 × 0.007 = 0.014.

As 0.014 > 0.01(α), Emily should not reject H0.
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SECTION B

Question 1 (10 marks)

a. A1

Attempting to solve this differential equation either by CAS or by hand with v(0) = 0. M1

b. When A1

As  the aeroplane will take off successfully. A1

c. i. A1

ii. This model suggests that  for a finite time value A1

Question 2 (10 marks)

a.

correct shape A1
correct direction of motion indicated A1
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b. i. Solving  for t M1

we obtain t = 1.29 (s) (correct to two decimal places). A1

ii. A1

Attempting to evaluate. M1

speed = 1.2 (m/s) (correct to one decimal place) A1

c. Let the distance travelled be d metres.

A1

Attempting to evaluate. M1

total distance = 7.8 (m) (correct to one decimal place)  A1

Question 3 (12 marks)

a. A1 A1

b. M1 A1

 and A1 A1

c.

V plotted correctly A1
U and W plotted correctly A1
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d. UOV, VOW and UOW are three congruent triangles with  

and  

Let the area be A.

Question 4 (11 marks)

a. Let X be the total weight of the five tangerines.

E(X) = 5 × 200 = 1000 and var(X) = 5 × 100 = 500. A1

Pr(875 < X < 975) = 0.1318 (correct to four decimal places) A1

b. Let Y = T – 3M, where T is the weight of a random tangerine and M is the weight of a 
random mandarin. M1

E(Y) = 200 – 3 × 75 = –25 and var(Y) = 10
2
 + 9 × 3

2
 = 181. A1

Pr(Y > 0) = 0.0316 (correct to four decimal places) A1

c. H0: µ = 100 versus H1: µ  100 A1

d. If H0 is true, then A1

M1

So p-value = 0.0201 (correct to four decimal places). A1
Note: Award full marks if the correct p-value is stated.

e. As 0.0201 < 0.05  we should reject H0 in favour of H1. A1

We have enough evidence to conclude that the mean weights are not 100 grams. A1

Question 5 (9 marks)

a. Use of Euler’s method (formula or program). M1

A1

b. i. A1
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ii. Since  is positive on the interval [6, 6.2], A1
the graph of f is concave up on the interval [6, 6.2]. A1

Hence the tangent lines (Euler approximation lines) are below the actual graph of f. A1

c. M1 A1

 (correct to four decimal places) A1

Question 6 (8 marks)

a. (8 – 6)g = (8 + 6)a and so a = 1.4 (m/s
2
). M1 A1

b. Let x be the distance travelled by the particle at A.

M1 A1

When x = 0, v = 0 and so c = 0; that is, v2 = 2.8x. A1

When x = 3, A1

c.

When t = 0, v = 0 and so c = 0; that is v = 1.4t. M1

When  we have A1

Note: Constant acceleration formulae are no longer part of the syllabus.
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