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VCE Specialist Mathematics Units 3&4 Trial Examination 1 Suggested Solutions

Question 1 (2 marks)

4 5 7
4 z
sec” (x) _ 4
J- s tan(x)dx = [log, (1 + tan()c))]O M1
= log,(2) Al
Question 2 (3 marks)
a.  Using p=my with m=025 and v = (4" - 41)i + (126" - 41)j.
Sop=(£ —1)i+(3F-1)j. Al
b.  Using F=ma with m=025and a=(12¢° - 4)i + (241 - 121°)j. MI
F=(3t"—1)i+(6¢—30)]
2 1 .
3t —1=0=t=— (seconds) (since t =2 0) Al
J3
Question 3 (3 marks)
cos(—{) = sin(f)
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VCE Specialist Mathematics Units 3&4 Trial Examination 1 Suggested Solutions

Question 4 (6 marks)

a. By the conjugate root theorem, z =1+ J3i is aroot. Al
, . 2
So (z—(1+3)(z— (1= 3i))=7" -2z +4.
3 2 2
SZ +Z7 +bz+12=(7"-2z+4)(z—m) M1
By equating coefficients, —4m =12 = m = -3.
So the roots are -3, 1 ﬁi. Al
b. 1-.3i= 2cis(—§) M1
k
(l—ﬁi) € Rfork(——;z) =nmne”’Z
Sok=-3n=k_, =3. Al
3
(1= 3i)" = 2%is(-7)
=-8 Al
Question 5 (4 marks)
a.  E(X)=EX)
=30 Al
o o
b. sd(X)=—
Jn
7
~100
7
=10 Al
c¢. EX)=30 Al
Note: This is unchanged as it is independent of n.
o o
sd(X)=—
Jn
7
~/400
_
"~ 20
sd()_( ) is reduced by a factor of 2. Al
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VCE Specialist Mathematics Units 3&4 Trial Examination 1 Suggested Solutions

Question 6 (3 marks)

Lety= cos | (u) and so u = 2!

dy -1 du 2 -2
- and =2y == M1
du 2 a dx * 2

X — Al

@=# but /\/x2=|x|,and since x > 2, /\/x2=x. So @z# Al
dx 2 dx 2
x| n/x™ -4 xAx =4

Note: The final Al should only be awarded if the second-last line (or equivalent) is shown.
Question 7 (9 marks)
a 1= I—gi d
=—g ti +c M1

When =0, E'(O) =Vcos(8)i + Vsin(8)j and so ¢ = Vcos(0)i + Vsin(6)].

So 1'(r) = Veos()i + (Vsin(6) - g1)j. Al
(1) = J‘Vcos(ﬁ)i + (Vsin(6) - gt)idt

- Vcos(ﬁ)l‘i+(Vsin(e)t—%gtz)];+c~l Ml
When =0, 1(0) = h]~' and so d = h]~'.

So (1) = Vcos(@)ti+(Vsin(6)t—%gt2+h)j. Al

Note: The final Al should only be awarded if the second last line is shown.
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VCE Specialist Mathematics Units 3&4 Trial Examination 1 Suggested Solutions

b. Parametric equations are x = Vcos(6)t and y = Vsin(6)t — 1gt2 + h.

2
. . . | )
Substitute ¢ = Veos (@) into y = Vsin(8)t — zgt + h. M1
2
y=tan(6)x — —-————‘gzc——i——— +h
2V200s )
2
=h+ tan(0)x — ‘&2(6))62 Al
2V

Note: The final Al should only be awarded if the second-last line is shown.

c. Consider y = h + tan(8)x — ‘g—x—zsecz(é’).
2v

Projectile fired horizontally:
0=0,V=U,y=0

2 2
0=h-5S =585 ) Al
2U 2U

Projectile fired at an angle of elevation of tan_1(3):

2
0=h+3x-182 (2)
2U
2 9 2
Substituting 4 = £2 into (2) gives 3x - £ = 0. M1
2U 2U
2
Solving gives x = %—’%— (metres). Al

Question 8 (3 marks)

¢ =ma + nb where m, n € R\{0} for linear dependence.

i+6j+ 10k =m(i+2j) +n(-i+5k) Al
Equating i components: m —n =1

Equating l components: 2m=6=>m=3

Equating k components: 5n=10=>n=2 M1
Note: Award M1 for attempting to form three equations.

m=3and n=2satisfym—n=1and so a, b and c are linearly dependent. Al
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Question 9 (7 marks)
2

a. Re-expressing y = = 1o give y=x+2+ —-i-— M1
x=2 -2
Asymptotes are y=x+ 2 and x = 2. Al
Stationary points are (4, 8) and (0, 0). Al
yl\
24 +
4 4

16 +
correct shape Al
2 2 xz
b. x =px —4):>)—C——-§=p(x+2) M1
Due to the asymptote y = x + 2, the maximum value of p is 1, Al

and we also require p > 0 (gradient of the line steeper than the horizontal line joining
(=2, 0) and (0, 0)).

So the required values are 0 <p < 1. Al
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