

Trial Examination 2016

VCE Specialist Mathematics Units 3&4

Written Examination 1

Suggested Solutions

Question 1 (2 marks)

$$\int_{0}^{\frac{\pi}{4}} \frac{\sec^{2}(x)}{1 + \tan(x)} dx = \left[\log_{e}(1 + \tan(x))\right]_{0}^{\frac{\pi}{4}}$$

$$= \log_{e}(2)$$
A1

Question 2 (3 marks)

a. Using
$$p = my$$
 with $m = 0.25$ and $y = (4t^3 - 4t)i + (12t^2 - 4t^3)j$.
So $p = (t^3 - t)i + (3t^2 - t^3)j$.

b. Using
$$\vec{F} = m\vec{a}$$
 with $m = 0.25$ and $\vec{a} = (12t^2 - 4)\vec{i} + (24t - 12t^2)\vec{j}$. M1
$$\vec{F} = (3t^2 - 1)\vec{i} + (6t - 3t^2)\vec{j}$$

$$3t^2 - 1 = 0 \Rightarrow t = \frac{1}{\sqrt{3}} \text{ (seconds) (since } t \ge 0\text{)}$$
A1

A1

Question 3 (3 marks)

$$\cos\left(\frac{x}{2}\right) = \sin\left(\frac{x}{4}\right)$$

$$1 - 2\sin^2\left(\frac{x}{4}\right) = \sin\left(\frac{x}{4}\right)$$

$$2\sin^2\left(\frac{x}{4}\right) + \sin\left(\frac{x}{4}\right) - 1 = 0, \ 0 \le \frac{x}{4} \le \pi$$

$$\left(2\sin\left(\frac{x}{4}\right) - 1\right)\left(\sin\left(\frac{x}{4}\right) + 1\right) = 0$$

$$\sin\left(\frac{x}{4}\right) = -1, \frac{1}{2}$$

As
$$0 \le \sin\left(\frac{x}{4}\right) \le 1$$
, $\sin\left(\frac{x}{4}\right) = \frac{1}{2}$.

$$\frac{x}{4} = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\therefore x = \frac{2\pi}{3}, \frac{10\pi}{3}$$
A1

A1

Question 4 (6 marks)

a. By the conjugate root theorem,
$$z = 1 + \sqrt{3}i$$
 is a root.

So
$$(z - (1 + \sqrt{3}i))(z - (1 - \sqrt{3}i)) = z^2 - 2z + 4$$
.

$$\therefore z^{3} + z^{2} + bz + 12 = (z^{2} - 2z + 4)(z - m)$$
 M1

By equating coefficients, $-4m = 12 \Rightarrow m = -3$.

So the roots are
$$-3$$
, $1 \pm \sqrt{3}i$.

$$\mathbf{b.} \qquad 1 - \sqrt{3}i = 2\operatorname{cis}\left(-\frac{\pi}{3}\right)$$
 M1

$$(1 - \sqrt{3}i)^k \in R \text{ for } k\left(-\frac{\pi}{3}\right) = n\pi, n \in Z$$

So
$$k = -3n \Rightarrow k_{\min} = 3$$
.

$$(1 - \sqrt{3}i)^3 = 2^3 \text{cis}(-\pi)$$

= -8

Question 5 (4 marks)

a.
$$E(\overline{X}) = E(X)$$

= 30

b.
$$\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}$$

$$= \frac{7}{\sqrt{100}}$$

$$= \frac{7}{10}$$
A1

c.
$$E(\bar{X}) = 30$$
 A1

Note: This is unchanged as it is independent of n.

$$sd(\overline{X}) = \frac{\sigma}{\sqrt{n}}$$
$$= \frac{7}{\sqrt{400}}$$
$$= \frac{7}{20}$$

 $\operatorname{sd}(\overline{X})$ is reduced by a factor of 2.

Copyright © 2016 Neap SMU34EX1_SS_2016.FM

Question 6 (3 marks)

Let $y = \cos^{-1}(u)$ and so $u = 2x^{-1}$.

$$\frac{dy}{du} = \frac{-1}{\sqrt{1 - u^2}}$$
 and $\frac{du}{dx} = -2x^{-2} = \frac{-2}{x^2}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \frac{-1}{\sqrt{1 - \left(\frac{2}{x}\right)^2}} \times \frac{-2}{x^2}$$

$$= \frac{2}{x^2 \sqrt{\frac{x^2 - 4}{x^2}}}$$
A1

$$\frac{dy}{dx} = \frac{2}{|x|\sqrt{x^2 - 4}}$$
 but $\sqrt{x^2} = |x|$, and since $x > 2$, $\sqrt{x^2} = x$. So $\frac{dy}{dx} = \frac{2}{x\sqrt{x^2 - 4}}$.

Note: The final A1 should only be awarded if the second-last line (or equivalent) is shown.

Question 7 (9 marks)

a.
$$\mathbf{r}'(t) = \int -g \mathbf{j} dt$$
$$= -gt \mathbf{j} + \mathbf{c}$$
 M1

When t = 0, $\dot{\mathbf{r}}(0) = V\cos(\theta)\dot{\mathbf{i}} + V\sin(\theta)\dot{\mathbf{j}}$ and so $\dot{\mathbf{c}} = V\cos(\theta)\dot{\mathbf{i}} + V\sin(\theta)\dot{\mathbf{j}}$.

So
$$\mathbf{r}'(t) = V\cos(\theta)\mathbf{j} + (V\sin(\theta) - gt)\mathbf{j}$$
. A1

$$\mathbf{r}(t) = \int V \cos(\theta) \mathbf{i} + (V \sin(\theta) - gt) \mathbf{j} dt$$

$$= V\cos(\theta)t_{\tilde{u}}^{i} + \left(V\sin(\theta)t - \frac{1}{2}gt^{2}\right)_{\tilde{u}}^{j} + d$$
 M1

When t = 0, $\underline{\mathbf{r}}(0) = h\underline{\mathbf{j}}$ and so $\underline{\mathbf{d}} = h\underline{\mathbf{j}}$.

So
$$\underline{\mathbf{r}}(t) = V\cos(\theta)t\underline{\mathbf{i}} + \left(V\sin(\theta)t - \frac{1}{2}gt^2 + h\right)\underline{\mathbf{j}}.$$
 A1

Note: The final A1 should only be awarded if the second last line is shown.

b. Parametric equations are $x = V\cos(\theta)t$ and $y = V\sin(\theta)t - \frac{1}{2}gt^2 + h$.

Substitute
$$t = \frac{x}{V\cos(\theta)}$$
 into $y = V\sin(\theta)t - \frac{1}{2}gt^2 + h$. M1

$$y = \tan(\theta)x - \frac{gx^2}{2V^2\cos^2(\theta)} + h$$

$$= h + \tan(\theta)x - \frac{g\sec^2(\theta)}{2V^2}x^2$$
 A1

Note: The final A1 should only be awarded if the second-last line is shown.

c. Consider $y = h + \tan(\theta)x - \frac{gx^2}{2v^2}\sec^2(\theta)$.

Projectile fired horizontally:

$$\theta = 0, V = U, y = 0$$

$$0 = h - \frac{gx^2}{2U^2} \Rightarrow h = \frac{gx^2}{2U^2} \dots (1)$$

Projectile fired at an angle of elevation of tan⁻¹(3):

$$0 = h + 3x - \frac{10gx^2}{2U^2} \dots (2)$$

Substituting
$$h = \frac{gx^2}{2U^2}$$
 into (2) gives $3x - \frac{9gx^2}{2U^2} = 0$. M1

Solving gives
$$x = \frac{2U^2}{3g}$$
 (metres). A1

Question 8 (3 marks)

c = ma + nb where $m, n \in R \setminus \{0\}$ for linear dependence.

$$i + 6j + 10k = m(i + 2j) + n(-i + 5k)$$
 A1

Equating i components: m - n = 1

Equating j components: $2m = 6 \Rightarrow m = 3$

Equating k components: $5n = 10 \Rightarrow n = 2$ M1

Note: Award M1 for attempting to form three equations.

m = 3 and n = 2 satisfy m - n = 1 and so a, b and c are linearly dependent.

Question 9 (7 marks)

a. Re-expressing
$$y = \frac{x^2}{x-2}$$
 to give $y = x + 2 + \frac{4}{x-2}$. M1

Asymptotes are y = x + 2 and x = 2.

Stationary points are (4, 8) and (0, 0).

correct shape A1

b.
$$x^2 = p(x^2 - 4) \Rightarrow \frac{x^2}{x - 2} = p(x + 2)$$
 M1

Due to the asymptote y = x + 2, the maximum value of p is 1, and we also require p > 0 (gradient of the line steeper than the horizontal line joining (-2, 0) and (0, 0)).

So the required values are 0 .