

#### 2016 TRIAL EXAMINATION 2

**UNITS 3 & 4** 

## STUDENT NAME

| First Name |  |  |  |  |  |  |  |  |  |  |
|------------|--|--|--|--|--|--|--|--|--|--|
| Last Name  |  |  |  |  |  |  |  |  |  |  |

# **SPECIALIST MATHEMATICS**

## Written examination 2

## 2016

Reading time: 15 minutes Writing time: 2 hours

## **QUESTION AND ANSWER BOOK**

#### Structure of book

| Section | Number of questions | Number of questions to be answered |       | Number of<br>marks |
|---------|---------------------|------------------------------------|-------|--------------------|
| 1       | 22                  | 22                                 |       | 22                 |
| 2       | 5                   | 5                                  |       | 58                 |
|         |                     |                                    | Total | 80                 |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one approved CAS calculator (memory DOES NOT need to be cleared) and, if desired, one scientific calculator. For approved computer-based CAS, their full functionality may be used.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

#### **Materials supplied**

- Question and answer book of 26 pages.
- Working space is provided throughout the book.

#### **Instructions**

- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.



## **SECTION 1**

#### **Instructions for Section 1**

3

Answer all questions on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Take the acceleration due to gravity to have magnitude g m/s<sup>2</sup>, where g = 9.8.

## **Question 1**

Which of the following functions has three asymptotes over its maximal domain?

**A.** 
$$f(x) = \frac{x^2}{x^2 - 4x + 4}$$

**B.** 
$$f(x) = \frac{x^2}{x^2 + 4x + 4}$$

C. 
$$f(x) = \frac{x^2}{x^2 - 4x + 3}$$

**D.** 
$$f(x) = \frac{x}{x-4}$$

$$\mathbf{E.} \quad f(x) = \frac{x}{4x+3}$$

#### **Question 2**

When a suitable substitution is used, the integral  $\int_0^3 x \sqrt{x-1} \, dx$  is the same as

$$\mathbf{A.} \quad \mathop{\grave{0}}_{2}^{3} u \sqrt{u} du$$

$$\mathbf{B.} \quad \mathop{\flat}_{2}^{3} (u+1) \sqrt{u} du$$

$$\mathbf{C.} \quad \mathring{\underbrace{0}}_{1}^{\sqrt{2}} 2u(u^2+1)du$$

**D.** 
$$\oint_{\frac{1}{2}} 2u^{2}(u^{2} + 1)du$$
**E.** 
$$\oint_{\frac{1}{2}} 2u^{2}(u^{2} + 1)du$$

**E.** 
$$\oint_{2}^{3} 2u^{2}(u^{2}+1)du$$

The region bounded by the graph of  $y = x\sqrt{x}$  and the lines with equations x = 0 and x = 1 is rotated about the x – axis. The value of the volume generated by this rotation is

- **A.**  $\frac{1}{4}$
- $\mathbf{B.} \quad \frac{\rho}{4}$
- C.  $\frac{2}{5}$
- **D.**  $\frac{2p}{5}$
- E.  $\frac{p}{2}$

## **Question 4**

Three forces of 5 N, 12 N and 13 N respectively, act on an object as shown in the diagram below.



If the object is in equilibrium, the value of  $a^{\circ}$  is

- **A.** 45.0°
- **B.** 65.4°
- **C.** 67.4°
- **D.** 76.1°
- **E.** 90.0°

Let y = f(x) be a continuous function where  $\frac{dy}{dx} = \frac{x}{y}$  and when x = 0, y = 0.

Consider the following five statements:

- x can take only positive values.
- f(x) has a horizontal asymptote, y = 0.
- f(x) has a stationary point at x = 0.
- $\bullet \qquad \frac{d^2y}{dx^2} = \frac{y x}{y^2}$

How many of the five statements above are **not** true?

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3
- **E.** 4

#### **Question 6**

Consider the two vectors  $\mathbf{a} = m\mathbf{i} + n\mathbf{j}$  and  $\mathbf{b} = p\mathbf{i} + q\mathbf{j}$ , where m, n, p and q are non-zero real constants. Which one of the following sentences is true?

- **A. a** and **b** are linearly dependent when  $\frac{m}{p} = \frac{n}{q}$ .
- **B.** a and b are linearly dependent when mp = nq.
- C.  $\boldsymbol{a}$  and  $\boldsymbol{b}$  have the same direction when mp > 0 and nq > 0.
- **D. a** and **b** are linearly independent when  $\frac{m}{p} = \frac{n}{q}$ .
- **E.** a and b are linearly independent when mp = nq.

#### **Question 7**

Let *X* and *Y* be two independent random variables for which E(3Y - 2X) = 25 and E(4X - Y) = 18. Correct to one decimal place, the value of E(-5X + Y) is

- A. -39.5
- **B.** −25.9
- **C.** 7.9
- **D.** 13.6
- **E.** 21.5

The maximal domain of  $f(x) = \sqrt{\frac{x}{1-x}} + \sin^{-1}(4x)$  is

- **A.**  $\left(-\frac{\rho}{8}, \frac{\rho}{8}\right)$
- **B.**  $\left[-\frac{\rho}{8}, \frac{\rho}{8}\right]$
- C. (0,1)
- **D.**  $\left[0, \frac{\rho}{8}\right)$
- **E.**  $\left(0, \frac{\rho}{8}\right)$

## **Question 9**

The equation  $cos(x) + sin(x) = a, x \in [0, 2\pi]$ , has at least one solution for any

- **A.**  $a 3 \sqrt{2}$
- **B.**  $a \pm -\sqrt{2}$
- $\mathbf{C.} \quad a \in \left[ -\sqrt{2}, \sqrt{2} \right]$
- **D.**  $a\hat{1}(-2,2)$
- **E.**  $a \in [-2,2]$

## **Question 10**

A biologist has collected 80 tree leaves and calculated the 95% confidence interval for the mean length of the leaves as  $103.5 \text{ mm} \le \mu \le 108.3 \text{ mm}$ .

The standard deviation, in mm, of the lengths of the leaves from this sample, correct to one decimal place, is

- **A.** 10.6
- **B.** 10.7
- **C.** 10.8
- **D.** 10.9
- **E.** 11.0

If  $\int_{0}^{1} f(x) dx = A$ , then  $\int_{0}^{1} f\left(\frac{1}{5}x^{2} + \frac{4}{5}x\right)(x+2) dx$  is equal to

- **A.** 2*A*
- **B.**  $\frac{2}{5}A$
- C.  $\frac{5}{2}$
- $\mathbf{D.} \quad \frac{A}{2}$
- $\mathbf{E}$ . A

## **Question 12**

Consider the functions  $f(x) = \sin(ax + b)$  and  $g(x) = \tan(cx + d)$ , a, b, c and  $d \in \mathbb{N}$ . The period of the function h(x) = f(x) g(x) could be

- **A.** *ac*
- **B.** 2*ac*
- C.  $2\pi$
- $\mathbf{D.} \quad \frac{2\rho}{ac}$
- E.  $\frac{\rho}{ac}$

#### **Question 13**

Part of the graphs of  $f(x) = e^x - x$  and g(x) = 3 are shown in the diagram below.



The volume generated when the shaded region is rotated about the *x*-axis is closest to

- **A.** 2.14
- **B.** 3.55
- **C.** 6.73
- **D.** 10.11
- **E.** 11.14

Three forces are acting on a particle such that the particle is kept in equilibrium.

Two of these forces are  $F_1 = 2i + 3j$  and  $F_2 = -i - 4j$ .

The magnitude of the third force is

- A.  $\sqrt{2}$
- **B.**  $\sqrt{10}$
- **C.**  $\sqrt{17}$
- **D.**  $\sqrt{50}$
- **E.**  $\sqrt{58}$

## **Question 15**

A sample of 200 items from a population is randomly selected. For each item a variable X is measured. For the variable measured, the sample standard deviation is s and the sample mean is  $\overline{x}$ . A confidence interval for the population mean,  $\mu$ , is calculated and given by  $(\overline{x} - 0.1386s, \overline{x} - 0.1386s)$ .

It follows that, the percentage of confidence given by this interval is

- **A.** 90%
- **B.** 95%
- **C.** 96%
- **D.** 98%
- **E.** 99%

#### **Question 16**

The polar form of the complex number  $z = (\sqrt{3} - i)(1 + i)(-2i)$  is

- $\mathbf{A.} \quad 4\sqrt{2}\operatorname{cis}\left(\frac{17\rho}{12}\right)$
- **B.**  $4\sqrt{2}\operatorname{cis}\left(-\frac{5\rho}{12}\right)$
- $\mathbf{C.} \quad 4\operatorname{cis}\left(-\frac{5\rho}{12}\right)$
- $\mathbf{D.} \quad 4\sqrt{2} \operatorname{cis}\left(\frac{5\rho}{12}\right)$
- **E.**  $4 \operatorname{cis} \left( \frac{5\rho}{12} \right)$

Let u = 2ai + bj and v = bi + aj, where a, b are non-zero real constants. Given that the vectors u and v are collinear, which one of the following is **not** true?

9

- **A.**  $\boldsymbol{u} \cdot \boldsymbol{v} = 3ab$
- **B.**  $2a^2 = b^2$
- $\mathbf{C.} \quad \frac{b}{a} = \pm \sqrt{2}$
- $\mathbf{D.} \quad |u| = |v|$
- **E.**  $|v| = \sqrt{a^2 + b^2}$

## **Question 18**

Let  $z = \operatorname{cis}(\theta), \theta \in (-\pi, \pi]$ .

Which one of the following sentences is **not** true?

- **A.**  $\overline{z} = \operatorname{cis}(-q)$
- **B.**  $z^2 = cis(2q)$
- **C.** |z| = 1
- **D.**  $\frac{z}{\overline{z}} = \operatorname{cis}(2q)$
- **E.**  $z\overline{z} = \operatorname{cis}(2q)$

#### **Question 19**

A particle moves in a straight line with a variable acceleration given by the rule  $a = 2v^2 - v \text{ ms}^{-2}$ , where v is the velocity of the particle, in  $\text{ms}^{-1}$ . The initial velocity of the particle is 1  $\text{ms}^{-1}$ . The velocity of the particle at time t seconds is given by

- $\mathbf{A.} \quad v = \frac{2}{2 e^t}$
- **B.**  $v = \frac{1}{2 e^t}$
- C.  $v = \frac{1}{2 e^{-t}}$
- **D.**  $v = \frac{1}{2 + e^t}$
- **E.**  $v = \frac{1}{e^t 2}$

#### **Question 20**

An object of mass m kg is moved in a straight line by a force of 16 N.

After 4 seconds the object reaches a velocity of 20 ms<sup>-1</sup>. The distance travelled during the first 4 seconds is 12 m. The mass of the object is

- **A.** 3.2 kg
- **B.** 3.5 kg
- **C.** 4 kg
- **D.** 5 kg
- **E.** 10.7 kg

#### **Question 21**

A mobile phone company offers 3 plans. Let *X* be the charge in dollars per month. The distribution of the random variable *X* is given in the table below.

| x         | \$6  | \$10 | \$20 |
|-----------|------|------|------|
| Pr(X = x) | 0.65 | 0.1  | 0.25 |

The company decides to increase its prices by 30% and add an extra \$2 for each plan afterwards.

Which of the following expressions gives the random variable of the new charges?

- **A.** 0.3X + 2
- **B.** 0.7X + 2
- **C.** 1.3X + 2
- **D.** 30X + 2
- **E.** 130X + 2

#### **Question 22**

The equation  $z^4 - az + b = 0$  has the solutions  $z_1 = 1$  and  $z_2 = 1 - i$ .

The values of a and b are

- **A.** both real numbers.
- **B.** both imaginary numbers.
- **C.** irrational numbers.
- **D.** a is an imaginary number while b is a real number.
- **E.** b is an imaginary number while a is a real number.

**END OF SECTION 1** 

## **SECTION 2**

#### **Instructions for Section 2**

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

## Question 1 (12 marks)

Calculate the variance of *X*.

A 6 sided die has one of its faces showing one dot, two faces showing two dots each and three faces showing three dots each. Let *X* be the random variable that gives the number of dots shown by the top face of the die when rolled. The probability distribution for the discrete random variable *X* is shown below.

| x         | 1 | 2 | 3             |
|-----------|---|---|---------------|
| Pr(X = x) | а | b | $\frac{1}{2}$ |

| Determine the values of $a$ and $b$ . | 1 m  |
|---------------------------------------|------|
|                                       |      |
|                                       |      |
|                                       |      |
|                                       |      |
| Calculate the mean value of $X$ .     | 2 ma |
|                                       |      |
|                                       |      |
|                                       |      |
|                                       |      |
|                                       |      |
|                                       |      |

**SECTION 2 – Question 1** – continued

**TURN OVER** 

2 marks

| 2016 | SPECIAL | IST MAT | THEMAT | ΓICS 3&4 | TRIAI | FYAM 1 |
|------|---------|---------|--------|----------|-------|--------|
|      |         |         |        |          |       |        |

12

An experiment is run with 2 identical dice as the one described before.

Let *Y* be the random variable that represents the sum of the dots shown when the two dice are rolled.

**d.** Show that  $c = \frac{1}{36}$  and  $d = \frac{5}{18}$ .

2 marks

| у         | 2 | 3             | 4 | 5             | 6             |
|-----------|---|---------------|---|---------------|---------------|
| Pr(Y = y) | c | $\frac{1}{9}$ | d | $\frac{1}{3}$ | $\frac{1}{4}$ |

**SECTION 2 – Question 1** – continued

**e.** Show that  $E(Y)^2 + E(Y) - \frac{E(Y^2)}{2} = 15$ .

3 marks

| Determine the median of <i>Y</i> . | 2 m |
|------------------------------------|-----|
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |
|                                    |     |

SECTION 2 – continued TURN OVER

**Question 2** (12 marks)

Consider the function  $f(x) = \tan(x)e^{2x}, x \in \left(-\frac{\rho}{2}, \frac{\rho}{2}\right)$ .

**a.** On the set of axes below, sketch the graph of f(x) clearly showing its features such as x and y

intercepts, turning points and asymptotes, if any.

2 marks



**SECTION 2 – Question 2** – continued

**b.** Show that 
$$f''(x) = 2f'(x) + 2\sec^2(x)[f(x) + e^{2x}], "x \in \left(-\frac{p}{2}, \frac{p}{2}\right).$$

3 marks

| Show that the function $f(x)$ has only one point of inflection flection correct to one decimal place. | n. Give the coordinates of the point of 2 n |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                       |                                             |
|                                                                                                       |                                             |
|                                                                                                       |                                             |
|                                                                                                       |                                             |

c.

d.

| e.  | <b>Hence</b> or otherwise determine the equation of the tangent to the curve of $f(x)$ at $x = \frac{\rho}{4}$ . Give your answer in the form $y = mx + c$ , $m$ , $c \in R$ . | 3 marks   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |                                                                                                                                                                                |           |
| Que | SECTION 2 – cestion 3 (12 marks)                                                                                                                                               | continued |
|     | nsider the set of complex numbers $P = \{z :  z + 4i - 1  = 3, z \in C\}$ .                                                                                                    |           |
| a.  | If $z = x + iy$ , where x and y are real values and $z \in P$ , determine the cartesian equation of the region represented by the set of complex numbers $P$ .                 | 2 marks   |

16

2016 SPECIALIST MATHEMATICS 3&4 TRIAL EXAM 2

**b.** On the set of axes below, sketch the region represented by the set of complex numbers  $P = \{z : |z + 4i - 1| \ge 3, z \in C\}.$ 

Clearly label all key features of the region (x and y – intercepts not required).

2 marks



**SECTION 2 – Question 3** – continued

TURN OVER

**c.** Calculate all  $z \in C$  such that |z + 4i - 1| = 3 and |z + 2 + 4i| = |z - 4 + 4i|.

2 marks

| 16 SPECIALIST MATHEMATICS 3&4 TRIAL EXAM 2 | 18 |
|--------------------------------------------|----|
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |
|                                            |    |

**SECTION 2 – Question 3** – continued

A and B are two sets of complex numbers defined by

$$A = \{ z = x + yi \mid x, y \in R, x^2 + (y+4)^2 = c \} \text{ and } B = \{ z = x + iy\} | |z + 4i - 1| \le 3, \forall z \in A \}.$$

**d.** On the set of axes below, sketch the locus A when c = 1 and the region B.

1 mark



**e.** Let  $A \subset B$  for all  $z = x + iy \in A$ .

i.

| Determine expressions for $x$ and $y$ in terms of $c$ when $A$ and $B$ intersect. |  |  |  | 3 m |
|-----------------------------------------------------------------------------------|--|--|--|-----|
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |
|                                                                                   |  |  |  |     |

**SECTION 2 – Question 3 – continued** 

| TURN | OVER |
|------|------|
|------|------|

 ${f ii.}$  Determine the largest value for c that satisfies the conditions given.

| ove, sketch the set of complex numbers defined by $\{ \in \mathbb{R}, x^2 + (x+4)^2 = c \}$ with the value of $c$ from part <b>e. ii</b> . | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                            |   |

20

**SECTION 2** – continued

## Question 4 (9 marks)

2016 SPECIALIST MATHEMATICS 3&4 TRIAL EXAM 2

An object of 2 kg mass, initially at rest, is pulled by a horizontal force. The object is moving across a horizontal smooth surface with an acceleration of  $3 \text{ ms}^{-2}$  for 10 seconds as shown in the diagram below.

|--|

| Calculate the speed of the object after 10 seconds.                                   | 1 mar |
|---------------------------------------------------------------------------------------|-------|
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
| Determine the distance travelled by the object in the first 10 seconds of the motion. | 1 mar |
| Determine the distance travened by the object in the first 10 seconds of the motion.  | 1 mai |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |
|                                                                                       |       |

After 10 seconds the object has reached the top of an inclined plane. The inclined plane has a rough surface and makes an angle of 12° with the horizontal. The object comes to a stop after it has travelled another 25 metres.

**c.** On the diagram below show all forces acting on the object.

2 marks



**SECTION 2 – Question 4** – continued

**TURN OVER** 

d. Calculate the acceleration of the object travelling down the inclined plane, correct to two decimal places.2 marks

| answer from <b>part d.</b> or otherwise, to calculate the coefficient of friction between clined plane. Give your answer correct to 2 decimal places. | n the object 3 n |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |
|                                                                                                                                                       |                  |

#### **SECTION 2** – continued

## **Question 5** (13 marks)

The position of a particle at any time t seconds relative to a point O, is given by the position vector  $\mathbf{r}(t) = \left[3\sin(t) - \sqrt{3}\cos(t) + a\right]\mathbf{i} + \left[-\sqrt{3}\sin(t) - 3\cos(t) + b\right]\mathbf{j}, t \in [0, 20], \text{ where } \mathbf{i} \text{ is the unit vector to the right and } \mathbf{j}$ is the unit vector in an upward direction.

| Calculate the values of $a$ and $b$ if the particle is initially at $O$ .                                                   | 2 m       |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
|                                                                                                                             |           |
| SECTION 2 – Quest                                                                                                           | TURN OV   |
| Determine the first two times when the particle is 6 m from the starting point O. Give your an correct to 2 decimal places. | swers 2 m |
| offeet to 2 decimal places.                                                                                                 | 2 111     |

| ECIALIST MATHEMATICS 3&4 TRIAL EXAM 2  | 24                                    |
|----------------------------------------|---------------------------------------|
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        |                                       |
|                                        | <b>SECTION 2 – Question 5</b> – cont. |
| how that $ \ddot{r}(t)  = \sqrt{12}$ . | 2 r                                   |

| etermine an expression for the velocity of the particle in the form $\dot{r}(t) = \left[m\cos(t+\partial)\right]\dot{i} - \left[m\cos(t+\partial)\right]\dot{i}$ ive your answers correct to 2 decimal places if required. | )] <i>j</i><br>3 m:       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                            |                           |
|                                                                                                                                                                                                                            |                           |
|                                                                                                                                                                                                                            |                           |
|                                                                                                                                                                                                                            |                           |
| SECTION 2 – Question 5 – co TURN etermine the cartesian equation of the path of the particle.                                                                                                                              | ntin<br><b>OV</b><br>4 ma |

26

2016 SPECIALIST MATHEMATICS 3&4 TRIAL EXAM 2

END OF QUESTION AND ANSWER BOOK