

2016 TRIAL EXAMINATION 1 UNITS 3 & 4

STUDENT NAME

First Name										
Last Name										

SPECIALIST MATHEMATICS

Written examination 1

2016

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, correction fluid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 13 pages.
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8.

Question 1 (4 marks)

Consider the function $f: [0, 3] \rightarrow R$ defined by the rule $f(x) = |x^2 - 3x + 2|$.

a. Write f(x) as a hybrid (piecewise) function over the given domain.

2 marks

		3
b.	Hence evaluate	$\grave{0} x^2 - 3x + 2 dx.$

2 marks

Question 2 (4 marks)

Determine the values of a, b and c such that $\cos^4(x) = a\cos^2(2x) + b\cos(2x) + c$.	2 r
Hence determine an antiderivative of $\cos^4(x)$.	2 r
Hence determine an antiderivative of $\cos^4(x)$.	2 r
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of $\cos^4(x)$.	2 r
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of $\cos^4(x)$.	2 r
Hence determine an antiderivative of $\cos^4(x)$.	2 1
Hence determine an antiderivative of cos ⁴ (x).	2 1
Hence determine an antiderivative of cos ⁴ (x).	2 1

Question 3 (7 marks)

Consider the two derivative functions $f'(x) = \frac{1}{2x-1}$ and $g'(x) = 5x\sqrt{x}$, with f(1) = 0 and g(1) = 2.

a. Show that $f(x) = \frac{1}{2} \log_e(2x - 1)$ and state its maximal domain.

3 marks

b. Show that $g(x) = 2x^2 \sqrt{x}$ and state its maximal domain.

2016 SPECIAL	IST MATHEMATICS	3&4 TRIAL	EXAM 1

Question 4 (8 marks)

Consider the four vectors

 $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j}$, $\overrightarrow{OB} = -\mathbf{i} + \mathbf{j}$, $\overrightarrow{OC} = m\mathbf{j}$ and $\overrightarrow{OD} = n\mathbf{i} + 4\mathbf{j}$, where m, n are non-zero real constants.

Determine vectors \overrightarrow{AB} and \overrightarrow{DC} .	2 m
Determine the values of m and n if $ABCD$ is a rhombus.	2 m

Calculate the area of the parallelogram <i>ABCD</i> .	4

Question 5 (3 marks)

An object of mass 0.4 kg is dropped from a window. The window is 40 metres above the ground. It takes the objec 2 seconds to reach the ground level. Calculate the vertical air resistance.						

Ou	estion	6	(3)	marks'	١
Vu		•	v	mun ind	,

I of 7 -	$\tan(a) + i$	whore a -	(p p)	. Express z in polar	· form
Let 2 –	$\tan(a) - i$	where $a \in$	$(-\frac{1}{2},\frac{1}{2})$. Express 2 iii polai	101111

Question 7 (5 marks)

Igor is a weightlifter who is training for the upcoming Commonwealth Games. One type of lift is called a snatch lift. Igor has taken a sample of 64 of his most recent snatch lifts. His sample has a mean weight of 120 kg and a standard deviation of 10 kg.

_	etermine a 95% confidence interval for the mean weight of all Igor's most recent snatch lifts.	2 m
_		
_		_
_		_
_		_
_		
_		
_		
E	xplain the meaning of the confidence interval obtained in part a.	1 r
_		
_		
_		
_		
	he world record for snatch lifts in Igor's category is 125 kg. Is Igor likely to beat the world record in is category? Justify your answer.	2 m
		_
_		
		_

Question 8 (6 marks)

b. On the Argand diagram below plot all solutions calculated in **part a.**

2 marks

Consider the equation with complex coefficients $(a + ib - 1)^4 = -i$, where a and b are non-zero real values.

Determine one possible set of values for a and b .	2 r