

Trial Examination 2015

VCE Specialist Mathematics Units 3&4

Written Examination 2

Suggested Solutions

SECTION 1

1	Α	В	C	D	E
2	Α	В	С	D	E
3	Α	В	С	D	E
4	Α	В	С	D	E
5	Α	В	С	D	E
6	Α	В	С	D	E
7	Α	В	С	D	E
8	Α	В	С	D	E
9	Α	В	С	D	E
10	Α	В	С	D	E
11	Α	В	С	D	E

12	Α	В	С	D	E
13	Α	В	С	D	E
14	Α	В	С	D	E
15	Α	В	С	D	E
16	Α	В	С	D	E
17	Α	В	C	D	E
18	Α	В	C	D	E
19	Α	В	С	D	E
20	Α	В	С	D	E
21	Α	В	С	D	E
22	Α	В	С	D	E

SECTION 1

Question 1

Forming $\frac{(x+2)^2}{9} - \frac{y^2}{16} = 0$ and solving for y gives $y = \pm \frac{4}{3}(x+2)$.

Alternatively, note that for $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$, the asymptotes have equations $y = \pm \frac{b}{a}(x-h) + k$.

Question 2 B

Vertical asymptotes occur for values of x such that the denominator is zero.

If x = -2 and x = 1 are vertical asymptotes, then we require (x + 2) and (x - 1) in the denominator.

The horizontal asymptote has equation y = 3.

So as $x \to \pm \infty$, y should approach 3.

Question 3 D

In general, if the graph of y = f(x) is dilated by a factor of 3 parallel to the y-axis and by a factor of $\frac{1}{2}$ parallel to the x-axis, then y = 3f(2x).

So $y = 3 \sec(2x)$.

Question 4

Using $\cos(2\theta) = 2\cos^2(\theta) - 1$ with $\theta = \frac{x}{2}$, we obtain $\cos(x) = 2\cos^2(\frac{x}{2}) - 1$.

Solving $\frac{1}{3} = 2\cos^2\left(\frac{x}{2}\right) - 1$ for $\cos\left(\frac{x}{2}\right)$ gives $\cos\left(\frac{x}{2}\right) = \pm \frac{\sqrt{6}}{3}$.

As x is an acute angle, $\cos\left(\frac{x}{2}\right)$ is positive, and so $\cos\left(\frac{x}{2}\right) = \frac{\sqrt{6}}{3}$.

Question 5

For $y = \tan^{-1}(x)$, the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

For $y = 2\tan^{-1}(x)$, the range is $(-\pi, \pi)$.

So for $y = 2\tan^{-1}(x) + \pi$ and hence $y = 2\tan^{-1}(x - 1) + \pi$, the range is $(0, 2\pi)$.

Question 6 B

$$z = x^{3} + y^{3}i$$

$$\bar{z} = x^{3} - y^{3}i$$

$$z\bar{z} = (x^{3} + y^{3}i)(x^{3} - y^{3}i)$$

$$= x^{6} + y^{6}$$

 $\text{Im}(z\bar{z}) = 0$ and so **B** is incorrect.

Note that $z - \overline{z} = 2y^3i$ and so $\text{Im}(z - \overline{z}) = 2y^3$.

Question 7 A

Method 1:

$$|z| = |z + 5|$$

This set of points is the perpendicular bisector of the line joining (0, 0) and (-5, 0). This corresponds to $Re(z) = -\frac{5}{2}$.

Method 2:

Let z = x + yi.

Solving |z| = |z + 5| for x gives $x = -\frac{5}{2}$.

So $Re(z) = -\frac{5}{2}$.

Question 8 A

 $i^3 = -i$

So u = -iz.

Hence multiplying by -i corresponds to rotating z through $\frac{\pi}{2}$ in a clockwise direction about the origin.

Question 9 D

If P(-2+i) = 0 then P(-2-i) = 0.

Solving $(z - (-2 + i))(z - (-2 - i))(z - w) = z^3 + z^2 - 7z - 15$ for w gives w = 3.

Question 10 E

The direction field indicates the gradient of the solution curve at various values of x and y.

The direction field is steep and positive for values of x close to zero, and less steep and positive as x increases.

This matches up with the behaviour of the graph of $y = \log_e(x)$.

Question 11 A

There is a repeated linear factor in the denominator, that is, $x^2 - 6x + 9 = (x - 3)^2$.

So the partial fraction form is $\frac{A}{(x-3)} + \frac{B}{(x-3)^2}$.

Question 12 E

$$\frac{dx}{dt} = 8$$

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

$$\frac{d}{dx}(\log_e(\cos(2x))) = -2\tan(2x)$$

At
$$x = \frac{\pi}{6}$$
, $\frac{dy}{dx} = -2\tan\left(\frac{\pi}{3}\right)$
$$= -2\sqrt{3}$$

$$\frac{dy}{dt} = (-2\sqrt{3})(8)$$

$$=-16\sqrt{3}$$
 (m/s)

Question 13

Let *V* be the volume.

Using
$$V = \pi \int_{a}^{b} y^{2} dx$$
 we obtain $V = \int_{0}^{\pi} \pi \left(1 - \sin\left(\frac{x}{2}\right)\right)^{2} dx$.

Question 14 E

 $u = x + 1 \Rightarrow x = u - 1$ and du = dx

$$\int (u-2)\sqrt{u} \ du = \int \left(u^{\frac{3}{2}} - 2u^{\frac{1}{2}}\right) du$$
$$= \frac{2}{5}u^{\frac{5}{2}} - \frac{4}{3}u^{\frac{3}{2}}$$
$$= \frac{2}{5}(x+1)^{\frac{5}{2}} - \frac{4}{3}(x+1)^{\frac{3}{2}}$$

Question 15

$$\overrightarrow{OA} = \overrightarrow{i} - 4\overrightarrow{j} + 3\overrightarrow{k} \text{ and } \overrightarrow{OB} = -3\overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (-3\overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}) - (\overrightarrow{i} - 4\overrightarrow{j} + 3\overrightarrow{k})$$

$$= -4\overrightarrow{i} + 3\overrightarrow{j}$$

$$\overrightarrow{AP} = \frac{1}{3}\overrightarrow{AB}$$

$$= \frac{1}{3}(-4\overrightarrow{i} + 3\overrightarrow{j})$$

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$

$$= (\overrightarrow{i} - 4\overrightarrow{j} + 3\overrightarrow{k}) + \frac{1}{3}(-4\overrightarrow{i} + 3\overrightarrow{j})$$

Question 16 E

 $=\frac{1}{3}(-i-9j+9k)$

A:
$$a + b = c$$

B:
$$a - b = c$$

C: clearly dependent

D:
$$b - a = c$$

Question 17 C

The angle between two vectors is measured 'tail-to-tail'.

So the angle between a and b is 60° (not 120°).

$$\begin{aligned}
\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} &= |\underline{\mathbf{a}}| |\underline{\mathbf{b}}| \cos(\theta) \\
&= 45 \cos(60^\circ) \\
&= \frac{45}{2}
\end{aligned}$$

Question 18 C

$$\overrightarrow{OB} = \mathbf{a} + \mathbf{b}$$

$$\overrightarrow{AC} = \mathbf{b} - \mathbf{a}$$

If the diagonals are at right angles then $\overrightarrow{OB} \cdot \overrightarrow{AC} = 0$.

TEVSMU34EX2_SS_2015.FM

So
$$(a + b) \cdot (b - a) = 0$$
.

Question 19 D

Resolving forces:

From $ma = F - \mu N$ we obtain $10 \times 0.25 = F - 0.1 \times 10g$.

So
$$F = 2.5 + g$$
.

Question 20 D

$$F - 2000g = 0 \Rightarrow F = 2000g$$

After the ballast is dropped, F still acts, but the downwards force is now 1800g N.

Hence the net force is now 200g N upwards.

So
$$a = \frac{200g}{1800}$$
 m/s² upwards.

This simplifies to $a = \frac{g}{9}$ m/s² upwards.

Ouestion 21 I

$$A = \frac{1}{2} \times 20 \times 2 + \frac{1}{2} \times 20 \times 2$$
$$= 40$$

Question 22 B

The momentum, p kg m/s, of the particle is given by p = my.

$$p = 2(2i - 3j)$$
$$= 4i - 6j$$

$$|\mathbf{p}| = \sqrt{4^2 + (-6)^2}$$
$$= \sqrt{52}$$
$$= 2\sqrt{13}$$

$$\tan(\theta) = \frac{2}{3} \Rightarrow \theta = 33.7^{\circ}$$

Thus the particle has momentum $2\sqrt{13}$ kg m/s in the direction S 33.7° E.

SECTION 2

Question 1 (10 marks)

a. $f(x) = \log_e(9 - x^2)$

$$f''(x) = \frac{-2(x^2 + 9)}{(x^2 - 9)^2}$$
 M1 A1

$$(x^2 - 9)^2 > 0$$
 for $-3 < x < 3$, $x^2 + 9 > 0$, and so $-2(x^2 + 9) < 0$ for $-3 < x < 3$.

b.
$$A = \int_0^2 \log_e(9 - x^2) dx$$
 M1

So A = 4.0472 (correct to 4 decimal places).

c. i. Using
$$y_{n+1} = y_n + hf(x_n)$$
 we obtain $y_{25} = y_{24} + 0.08f(9 - x_{24}^2)$. M1
$$y_{25} = y_{24} + 0.08\log_e(9 - 1.92^2) \text{ (or equivalent)}.$$

ii.
$$y_{25} = 3.9367 + 0.08\log_e(9 - 1.92^2)$$

= 4.0703 (correct to 4 decimal places)

iii.
$$y \approx \int_{0}^{x_{25}} \log_e(9 - x^2) dx$$
 A1

$$y = \int_{0}^{2} \log_{e}(9 - x^{2}) dx$$

$$= A$$
A1

Question 2 (12 marks)

a. 2 kg/L at 3 L/min, so $\frac{dQ}{dt_{in}}$ = 6 kg/min.

$$\frac{Q}{200 + (3-r)t} \text{ kg/L at } r \text{ L/min, so } \frac{dQ}{dt_{\text{out}}} = \frac{rQ}{200 + (3-r)t} \text{ kg/min.}$$

$$\frac{dQ}{dt} = 6 - \frac{rQ}{200 + (3-r)t}$$

When
$$t = 0$$
, $Q = 100$.

b. i. When r = 3, $\frac{dQ}{dt} = 6 - \frac{3Q}{200}$.

Attempts to solve
$$\frac{dQ}{dt} = 6 - \frac{3Q}{200}$$
 for Q with $Q(0) = 100$.

$$Q = 400 - 300e^{-\frac{3t}{200}}$$
 A1

ii. As
$$t \to \infty$$
, $e^{-\frac{3t}{200}} \to 0$ and so $Q \to 400$.

In the long term, there will be 400 kg of salt in the tank.

c. i. When
$$r = 2$$
, $\frac{dQ}{dt} = 6 - \frac{2Q}{200 + (3 - 2)t}$
= $6 - \frac{2Q}{200 + t}$ A1

ii. We are given
$$Q = 2(200 + t) + \frac{c}{(200 + t)^2}$$
.

$$\frac{dQ}{dt} = 2 - \frac{2c}{(200+t)^3}$$
 A1

A1

$$6 - \frac{2Q}{200 + t} = 6 - \frac{2}{200 + t} \left(2(200 + t) + \frac{c}{(200 + t)^2} \right)$$

$$=2-\frac{2c}{(200+t)^3}$$
 A1

So the solution is verified.

When
$$t = 0$$
, $Q = 100$, and so $c = -300 \times 200^2 (= -12\ 000\ 000)$.

iii.
$$Q = 2(200 + t) - \frac{300 \times 200^2}{(200 + t)^2}$$

When
$$t = 25$$
, $Q = 2 \times 225 - \frac{300 \times 200^2}{225^2}$.

So 213.0 kg of salt is in the tank (correct to 1 decimal place).

Question 3 (10 marks)

a.
$$z^{n} + \frac{1}{z^{n}} = \cos(n\theta) + i\sin(n\theta) + \cos(-n\theta) + i\sin(-n\theta)$$

$$= \cos(n\theta) + i\sin(n\theta) + \cos(n\theta) - i\sin(n\theta)$$

$$= 2\cos(n\theta)$$
A1

b.
$$z^{n} - \frac{1}{z^{n}} = \cos(n\theta) + i\sin(n\theta) - \cos(-n\theta) - i\sin(-n\theta)$$

$$= \cos(n\theta) + i\sin(n\theta) - \cos(n\theta) + i\sin(n\theta)$$

$$= 2i\sin(n\theta)$$
A1

$$c. \qquad \left(z + \frac{1}{z}\right)^4 \left(z - \frac{1}{z}\right)^2 = z^6 + 2z^4 - z^2 - \frac{1}{z^2} + \frac{2}{z^4} + \frac{1}{z^6} - 4$$

$$= z^6 + \frac{1}{z^6} + 2\left(z^4 + \frac{1}{z^4}\right) - \left(z^2 + \frac{1}{z^2}\right) - 4$$
A1

d.
$$z^6 + \frac{1}{z^6} + 2\left(z^4 + \frac{1}{z^4}\right) - \left(z^2 + \frac{1}{z^2}\right) - 4 = 2\cos(6\theta) + 4\cos(4\theta) - 2\cos(2\theta) - 4$$
 A1
$$\left(z + \frac{1}{z}\right)^4 \left(z - \frac{1}{z}\right)^2 = -64\cos^4(\theta)\sin^2(\theta)$$
 M1

So
$$\int \cos^4(\theta) \sin^2(\theta) d\theta = -\frac{1}{192} \sin(6\theta) - \frac{1}{64} \sin(4\theta) + \frac{1}{64} \sin(2\theta) + \frac{1}{16} \theta (+c)$$
. M1 A1

Question 4 (14 marks)

a.
$$12\underline{\mathbf{i}} = 12\cos\left(\frac{t}{4}\right)\underline{\mathbf{i}} + 6\sin\left(\frac{t}{4}\right)\underline{\mathbf{j}} \Rightarrow \cos\left(\frac{t}{4}\right) = 1$$

$$\cos\left(\frac{t}{4}\right) = 1 \Rightarrow t = 0, 8\pi, 16\pi$$
M1

So the particle takes 8π seconds to return to its initial position.

b. The parametric equations are $x = 12\cos\left(\frac{t}{4}\right)$ and $y = 6\sin\left(\frac{t}{4}\right)$.

Using
$$\cos^2(\frac{t}{4}) + \sin^2(\frac{t}{4}) = 1$$
 we obtain $\frac{x^2}{144} + \frac{y^2}{36} = 1$.

$$-12 \le 12\cos\left(\frac{t}{4}\right) \le 12 \implies -12 \le x \le 12$$

c.
$$\underline{r}(t) = 12\cos\left(\frac{t}{4}\right)\underline{i} + 6\sin\left(\frac{t}{4}\right)\underline{j}$$

$$\mathbf{r}'(t) = -3\sin\left(\frac{t}{4}\right)\mathbf{i} + \frac{3}{2}\cos\left(\frac{t}{4}\right)\mathbf{j}$$
 M1

$$\left| \mathbf{r}'(t) \right| = \sqrt{9\sin^2\left(\frac{t}{4}\right) + \frac{9}{4}\cos^2\left(\frac{t}{4}\right)} \text{ (or equivalent)}$$
 A1

d. Method 1:

$$|\mathbf{r}'(t)| = \frac{3}{2}\sqrt{1 + 3\sin^2(\frac{t}{4})}$$
 M1

The maximum occurs when
$$\sin^2\left(\frac{t}{4}\right) = 1$$
, that is, $\sin\left(\frac{t}{4}\right) = \pm 1$.

When
$$\sin\left(\frac{t}{4}\right) = \pm 1$$
, $t = 2\pi$, 6π , 10π , 14π .

Method 2:

$$\left| \mathbf{r}'(t) \right| = \frac{3}{2} \sqrt{4 - 3\cos^2\left(\frac{t}{4}\right)}$$
 M1

The maximum occurs when
$$\cos^2\left(\frac{t}{4}\right) = 0$$
, that is, $\cos\left(\frac{t}{4}\right) = 0$.

When
$$\cos\left(\frac{t}{4}\right) = 0$$
, $t = 2\pi$, 6π , 10π , 14π .

e.
$$\mathbf{r}'(t) = -3\sin\left(\frac{t}{4}\right)\mathbf{i} + \frac{3}{2}\cos\left(\frac{t}{4}\right)\mathbf{j}$$

$$\mathbf{r}''(t) = -\frac{3}{4}\cos\left(\frac{t}{4}\right)\mathbf{i} - \frac{3}{8}\sin\left(\frac{t}{4}\right)\mathbf{j}$$
 M1

So
$$\underline{\mathbf{r}}''(t) = -\frac{1}{16}\underline{\mathbf{r}}(t)$$
, that is, $k = -\frac{1}{16}$.

Method 1:

$$\left|\mathbf{r}''(t)\right| = \frac{3}{8} \sqrt{4 - 3\sin^2\left(\frac{t}{4}\right)}$$
 M1

When
$$\sin\left(\frac{t}{4}\right) = 0$$
, $t = 0$, 4π , 8π , 12π , 16π .

Method 2:

$$\left|\underline{\mathbf{r}''(t)}\right| = \frac{3}{8}\sqrt{1 + 3\cos^2\left(\frac{t}{4}\right)}$$
 M1

When
$$\cos\left(\frac{t}{4}\right) = \pm 1$$
, $t = 0, 4\pi, 8\pi, 12\pi, 16\pi$.

Question 5 (12 marks)

a.

A1

Award A1 for the forces acting on both the m_1 kg block and the m_2 kg block.

b.
$$m_1 \text{ kg block: } T - m_1 g \sin(\theta) = m_1 a; m_2 \text{ kg block: } m_2 g - T = m_2 a$$
 A1

Either adds the two equations to give $m_2g - m_1g\sin(\theta) = (m_1 + m_2)a$ (eliminating *T*), or attempts to solve the above two equations simultaneously for *a* and *T*.

$$a = \frac{(m_2 - m_1 \sin(\theta))g}{(m_1 + m_2)}$$
 A1

c. Method 1:

Attempts to solve the above two equations simultaneously for *a* and *T*. M1

$$T = \frac{m_1 m_2 g(1 + \sin(\theta))}{m_1 + m_2}$$
 (expressed as a single fraction) A1

Method 2:

$$T = m_2 g - \frac{m_2 g(m_2 - m_1 \sin(\theta))}{m_1 + m_2}$$

$$= \frac{m_2 g(m_1 + m_2)}{m_1 + m_2} - \frac{m_2 g(m_2 - m_1 \sin(\theta))}{m_1 + m_2}$$

$$= \frac{(m_1 m_2 + m_2^2 - m_2^2 + m_1 m_2 \sin(\theta))g}{m_1 + m_2}$$
M1

$$= \frac{m_1 m_2 g(1 + \sin(\theta))}{m_1 + m_2}$$
 (expressed as a single fraction) A1

d. Using $v^2 = u^2 + 2as$ with u = 0, $a = \frac{(m_2 - m_1 \sin(\theta))g}{(m_1 + m_2)}$ and s = 1 gives:

$$v = \sqrt{\frac{2g(m_2 - m_1 \sin(\theta))}{m_1 + m_2}} \text{ (since } v > 0)$$
 M1 A1

e. With the string slack, the m_1 kg block will move up the plane, come to rest instantaneously, and then move down the plane to the same position corresponding to when the m_2 kg block hit the ground.

$$m_1 a = -m_1 g \sin(\theta) \Rightarrow a = -g \sin(\theta)$$
 A1

Using
$$v = u + at$$
 with $u = \sqrt{\frac{2g(m_2 - m_1\sin(\theta))}{m_1 + m_2}}$ and $a = -g\sin(\theta)$ gives:

$$0 = \sqrt{\frac{2g(m_2 - m_1 \sin(\theta))}{m_1 + m_2}} - (g\sin(\theta))t$$
 M1

Solving for
$$t$$
 gives $t = \frac{1}{g\sin(\theta)} \sqrt{\frac{2g(m_2 - m_1\sin(\theta))}{m_1 + m_2}}$. M1

The m_1 kg block will take the same amount of time to travel down the plane.

So
$$t = \frac{2}{g\sin(\theta)} \sqrt{\frac{2g(m_2 - m_1\sin(\theta))}{m_1 + m_2}}$$
 (or equivalent). A1