ZSTEVE Specialist Mathematics Exam 1

Reading time: 15 minutes

Writing time: 60 minutes

No notes or calculator of any type are allowed.

40 marks are available

N.B. this exam aims to extend the knowledge and test the adaptability of students to new concepts, and thus does not purely target its questions within the VCE study design scope. However, all questions should be doable with Specialist level skills. For further investigation, notes have been included in some extension questions.

Exam written by Stephen Zhang, VCE Student in 2015.

1. Find	If the resolute of the vector $\vec{a} = 2\vec{i} + 2\vec{j} + 9\vec{k}$ in the direction of $\vec{b} = \vec{i} - \vec{j} + \vec{k}$
[2 marks]	
_	ther differential equations
(a)	Show that $y = e^{kx}$ can be solution to $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$ (this type of differential equation is called a second order linear homogenous equation)
	Hence, for the general differential equation $a_0 \frac{d^2y}{dx^2} + a_1 \frac{dy}{dx} + a_2y = 0$ find an expression $F(k) = 0$ which can be solved for values of k . Give your answer as $F(k) = \cdots$
	Let these solutions be k_1, k_2 , in any order. Show that $y = Ae^{k_1x} + Be^{k_2x}$ must also be a solution, for arbitrary constants $A, B \in \mathbb{R}$. (This solution is the general solution to this differential equation!)
[2+2+2 6	
[2+2+2=6]	
	If the complex linear factors of $P(z) = z^3 + z^2 + z + 1$ [hint – evaluate for $z=-1$], ressing each factor in the form $(z - r \operatorname{cis}(\theta))$ where θ is the principal Argument.

[4 marks]
 4. [trigonometric substitutions] (a) By using the substitution x = f(u) where f(u) is a standard trigonometric function [not an inverse trig function], find the antiderivative of √1 − x². By restricting the values of u, justify your mathematical reasoning.
[3 marks]

l mark]
 5. An object of mass 1 kg is moving with initial velocity \$\vec{v_0}\$ = 2\$\vec{i}\$ + 2\$\vec{j}\$ + 2\$\vec{k}\$ at time \$t\$=0, and is subjected to a net force \$\Sigma \vec{F}\$ = \$e^{-t}(\vec{i} + \vec{j} + \vec{k})\$. (a) Find the terminal velocity of the object, i.e. lim \$\vec{v}(t)\$.
2 manufacil
(b) Find the displacement from its initial position (let this be O) at any time <i>t</i> .
(b) I find the displacement from its initial position (let this be 0) at any time i.
2 marks]

[4 marks] 7. Using calculus, find an expression for the volume of the truncated cone with minimal and the state of the truncated cone with minimal and the state of the state of the state of the truncated cone with minimal and the state of	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
7. Using calculus, find an expression for the volume of the truncated cone with minimal ar	
maximal radii respectively q, r and height h . Give your answer in the form $\frac{a\pi}{b}$ where a , real expressions.	
[5 marks]	

6. Express $11i + 10j + 10k$ in terms of the vectors $i + 0j + 2k$ and $3 + 2j + 2k$	8.	Express $11\vec{i} + 18\vec{j} + 10\vec{k}$ in terms of the vectors \vec{i} +	61 +	$2\vec{k}$ and	$1\vec{3} + 2$	$\vec{j} + 2\vec{k}$.
--	----	---	------	----------------	----------------	------------------------

[2 marks]

9. Find the area of the triangle $\triangle OAB$ for O(0,0), A(2,1), and B(1,4) using a vector method.

[3 marks]

10.

(a) Sketch the direction field $\frac{dy}{dx} = xy$ for $x = 0, \pm 1, \pm 2$ and $y = 0, \pm 1, \pm 2$.

[2 marks]

(b) Given that $\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{1}{g(y)}\frac{dy}{dx} = f(x)$, and using the change of variable rule
$\int f(u) \frac{du}{dx} dx = \int f(u) du$, find the general solution curve for this differential
equation. (These are called separable equations, and from what I hear are due to be introduced to the 2016 VCE Specialist study design)
(c) Using calculus if necessary, sketch the member of this family of curves which passes through (0, 1) on the diagram above.

END OF EXAMINATION

Total marks: 40