

Victorian Certificate of Education 2014

SUPERVISOR TO ATTACH PROCESSING LABEL HERE	

					Letter
STUDENT NUMBER					

SPECIALIST MATHEMATICS

Written examination 1

Friday 7 November 2014

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

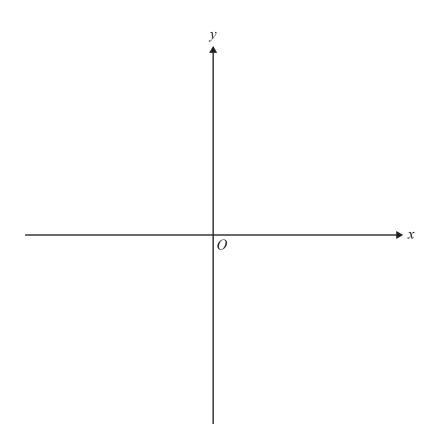
Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8.

Question 1 (5 marks)

Consider the vector $\tilde{\mathbf{a}} = \sqrt{3}\,\tilde{\mathbf{i}} - \tilde{\mathbf{j}} - \sqrt{2}\,\tilde{\mathbf{k}}$, where $\tilde{\mathbf{i}}, \tilde{\mathbf{j}}$ and $\tilde{\mathbf{k}}$ are unit vectors in the positive directions of the x, y and z axes respectively.

Find the unit vector in the direction of \hat{a} .	1 mar
Find the acute angle that \tilde{a} makes with the positive direction of the x-axis.	2 mark
The vector $\mathbf{b} = 2\sqrt{3}\mathbf{i} + m\mathbf{j} - 5\mathbf{k}$.	
Given that b is perpendicular to a , find the value of m .	2 mark


Question 2 (5 marks)

The position vector of a particle at time $t \ge 0$ is given by

$$\mathbf{r}(t) = (t-2)\mathbf{i} + (t^2 - 4t + 1)\mathbf{j}$$

a. Show that the cartesian equation of the path followed by the particle is $y = x^2 - 3$. 1 mark

b. Sketch the path followed by the particle on the axes below, labelling all important features. 2 marks

c. Find the speed of the particle when t = 1. 2 marks

Question 3 (5 marks)

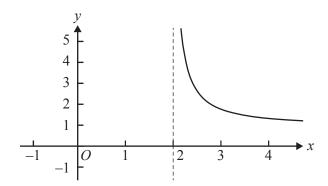
Let f be a function of a complex variable, defined by the rule $f(z) = z^4 - 4z^3 + 7z^2 - 4z + 6$.

a. Given that z = i is a solution of f(z) = 0, write down a quadratic factor of f(z).

2 marks

b. Given that the other quadratic factor of f(z) has the form $z^2 + bz + c$, find all solutions of $z^4 - 4z^3 + 7z^2 - 4z + 6 = 0$ in cartesian form.

Question 4 (3 marks)
Find the gradient of the normal to the curve defined by $y = -3e^{3x}e^y$ at the point $(1, -3)$.


Question 5 (5 marks)

For the function with rule $f(x) = 96\cos(3x)\sin(3x)$, find the value of a such that $f(x) = a\sin(6x).$ 1 mark Use an appropriate substitution in the form u = g(x) to find an equivalent definite integral for $\int_{\frac{\pi}{36}}^{\frac{\pi}{12}} 96\cos(3x)\sin(3x)\cos^2(6x)dx$ in terms of u only. 3 marks Hence evaluate $\int_{\frac{\pi}{36}}^{\frac{\pi}{12}} 96\cos(3x)\sin(3x)\cos^2(6x)dx$, giving your answer in the form \sqrt{k} , $k \in \mathbb{Z}$. 1 mark Question 6 (5 marks)

a. Verify that $\frac{a}{a-4} = 1 + \frac{4}{a-4}$.

1 mark

Part of the graph of $y = \frac{x}{\sqrt{(x^2 - 4)}}$ is shown below.

b. The region enclosed by the graph of $y = \frac{x}{\sqrt{(x^2 - 4)}}$ and the lines y = 0, x = 3 and x = 4 is rotated about the x-axis.

Find the volume of the resulting solid of revolution.

Question 7 (5 marks)

Consider $f(x) = 3x \arctan(2x)$.

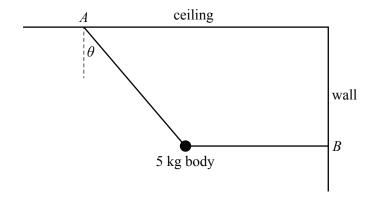
a. Write down the range of f.

1 mark

b. Show that $f'(x) = 3\arctan(2x) + \frac{6x}{1+4x^2}$.

1 mark

c. Hence evaluate the area enclosed by the graph of $g(x) = \arctan(2x)$, the x-axis and


the lines $x = \frac{1}{2}$ and $x = \frac{\sqrt{3}}{2}$.

Question 8 (7 marks)

b.

c.

A body of mass 5 kg is held in equilibrium by two light inextensible strings. One string is attached to a ceiling at A and the other to a wall at B. The string attached to the ceiling is at an angle θ to the vertical and has tension T_1 newtons, and the other string is horizontal and has tension T_2 newtons. Both strings are made of the same material.

Express T_2 in terms of θ .

Show that $\tan(\theta) < \sec(\theta)$ for $0 < \theta < \frac{\pi}{2}$.	1 marl

The type of string used will break if it is subjected to a tension of more than 98 N. Find the maximum allowable value of θ so that neither string will break.				

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

SPECMATH

Specialist Mathematics formulas

2

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$

$$\cot^2(x) + 1 = \csc^2(x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
 $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

function	\sin^{-1}	\cos^{-1}	tan ⁻¹
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \cos \theta$$

$$\begin{aligned} |z| &= \sqrt{x^2 + y^2} = r \\ z_1 z_2 &= r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) \end{aligned} \qquad \begin{aligned} -\pi &< \operatorname{Arg} \ z \leq \pi \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2) \end{aligned}$$

$$z^n = r^n \operatorname{cis}(n\theta)$$
 (de Moivre's theorem)

Calculus

$$\frac{d}{dx}(x^{n}) = nx^{n-1} \qquad \int x^{n} dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax} \qquad \int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x} \qquad \int \frac{1}{x} dx = \log_{e}|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax) \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^{2}(ax) \qquad \int \sec^{2}(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \int \frac{1}{\sqrt{a^{2}-x^{2}}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \int \frac{a}{a^{2}+x^{2}} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

SPECMATH

Vectors in two and three dimensions

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$|\overset{\mathbf{r}}{_{\sim}}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} z_{n} = r_{1}r_{2} \cos \theta = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\dot{\mathbf{i}} + \frac{dy}{dt}\dot{\mathbf{j}} + \frac{dz}{dt}\dot{\mathbf{k}}$$

Mechanics

momentum: p = my

equation of motion: R = m a

friction: $F \le \mu N$