The Mathematical Association of Victoria SOLUTIONS Trial Exam 2013

SPECIALIST MATHEMATICS

Written Examination 1

Question 1

80a = T - 80g

$$\Rightarrow T = 80a + 80g = 80(a + g)$$
. [M1]

Require T = 80(a + g) < 200g:

80(a+g) < 200g

$$\Rightarrow a + g < \frac{5g}{2}$$

$$\Rightarrow a < \frac{5g}{2} - g = \frac{3g}{2} \text{ m/s}^2.$$

Total 2 marks

[A1]

Question 2

$$(2i-j+3k)\cdot(ai-6j-2k) = 2a+6-6=2a.$$
 (1)

$$(2i - j + 3k) \cdot (ai - 6j - 2k) = |2i - j + 3k| |ai - 6j - 2k| \cos\left(\frac{2\pi}{3}\right)$$

$$= \sqrt{14}\sqrt{a^2 + 40}\left(-\frac{1}{2}\right). \qquad (2)$$

Equate equations (1) and (2):

$$2a = -\frac{1}{2}\sqrt{14}\sqrt{a^2 + 40}$$
 [M1]

$$\Rightarrow -4a = \sqrt{14}\sqrt{a^2 + 40}$$

$$\Rightarrow 16a^2 = 14(a^2 + 40)$$

$$\Rightarrow 2a^2 = 14 \times 40 \Rightarrow a^2 = 7 \times 40 \Rightarrow a = \pm \sqrt{280} = \pm 2\sqrt{70}$$

Case 1: $a = \sqrt{280} \Rightarrow \cos(\theta) = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$ where θ is the angle between 2i - j + 3k and ai - 6j - 2k.

Therefore $a = \sqrt{280}$ is rejected.

Case 2:
$$a = -\sqrt{280} = -2\sqrt{70}$$
. [A1]

Total 3 marks

Justification for rejecting $a = \sqrt{280}$ is not required. Simplification of surd is not required.

a.

Use implicit differentiation:

$$\frac{1}{2}\frac{d}{dx}(y-1)^2 - \frac{2}{k}(x+2) = 0$$

$$\Rightarrow \frac{1}{2} \frac{d}{dy} (y-1)^2 \times \frac{dy}{dx} - \frac{2}{k} (x+2) = 0$$
 [M1]

$$\Rightarrow (y-1) \times \frac{dy}{dx} - \frac{2}{k}(x+2) = 0$$

$$\Rightarrow (y-1) \times \frac{dy}{dx} = \frac{2}{k}(x+2)$$

$$\Rightarrow \frac{dy}{dx} = \frac{2(x+2)}{k(y-1)}.$$

Total 2 marks

[A1]

b.

The gradient of the line 7y - 3x = -11 is $\frac{3}{7}$

therefore the gradient of the **normal** to the hyperbola at a point where x = -1 is $\frac{3}{7}$

therefore the gradient of the **tangent** to the hyperbola at a point where x = -1 is $-\frac{7}{3}$.

Substitute $\frac{dy}{dx} = -\frac{7}{3}$ and x = -1 into $\frac{dy}{dx} = \frac{2(x+2)}{k(y-1)}$ (answer from **part a.**):

$$-\frac{7}{3} = \frac{2}{k(y-1)}.$$
(1)

Substitute x = -1 into the given normal 7y - 3x = -11:

$$7y + 3 = -11$$

$$\Rightarrow y = -2.$$
 [A1]

Therefore 7y - 3x = -11 is normal to the hyperbola at the point (-1, -2).

Substitute y = -2 into equation (1):

$$-\frac{7}{3} = \frac{2}{-3k}$$

$$\Rightarrow k = \frac{2}{7}.$$
 [A1]

$$a(t) = \frac{d \mathbf{v}}{dt} = \left(\frac{1}{1+t^2}\right) \mathbf{i} - \frac{1}{(t+1)^2} \mathbf{j} - \left(\frac{1}{t+1}\right) \mathbf{k}$$

$$\Rightarrow \mathbf{v}(t) = \int \left(\frac{1}{1+t^2}\right) \dot{\mathbf{i}} - \frac{1}{(t+1)^2} \dot{\mathbf{j}} - \left(\frac{1}{t+1}\right) \dot{\mathbf{k}} dt$$

$$= \tan^{-1}(t) i + \left(\frac{1}{t+1}\right) j - \log_e(t+1) k + C$$
 (Note that $|t+1| = t+1$ for $t \ge 0$)

where C is the arbitrary constant vector of integration.

Substitute
$$v(0) = i - j + k$$
:
 $\sim \sim \sim \sim$

$$i - j + k = \tan^{-1}(0)i + \left(\frac{1}{0+1}\right)j - \log_e(0+1)k + C$$

$$\Rightarrow i - j + k = j + C$$

$$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$$

$$\Rightarrow C = i - 2j + k.$$

Therefore:

$$v(t) = \tan^{-1}(t) i + \left(\frac{1}{t+1}\right) j - \log_e(t+1) k + i - 2 j + k$$
[A1]

$$= (1 + \tan^{-1}(t)) i + (\frac{1}{t+1} - 2) j + (1 - \log_e(t+1)) k.$$

Components do not need to be collected.

$$\left| \frac{z + 1 - 2i}{z + 2 - i} \right| = 1$$

$$\Rightarrow \frac{|z+1-2i|}{|z+2-i|} = 1$$
 [M1]

$$\Rightarrow |z+1-2i| = |z+2-i|$$
.

Method 1: Algebraic approach.

Substitute z = x + iy:

$$|x + iy + 1 - 2i| = |x + iy + 2 - i|$$

$$\Rightarrow |(x+1)+i(y-2)| = |(x+2)+i(y-1)|$$

$$\Rightarrow \sqrt{(x+1)^2 + (y-2)^2} = \sqrt{(x+2)^2 + (y-1)^2}$$

$$\Rightarrow (x+1)^2 + (y-2)^2 = (x+2)^2 + (y-1)^2$$
 [M1]

$$\Rightarrow$$
 2x + 1 - 4y + 4 = 4x + 4 - 2y + 1

[A1]

Total 3 marks

Method 2: Geometric approach.

$$|z+1-2i| = |z+2-i|$$

 $\Rightarrow y = -x$.

$$\Rightarrow |z - (-1 + 2i)| = |z - (-2 + i)|$$
.

This is recognised as the perpendicular bisector of the line segment joining z = -1 + 2i and z = -2 + i.

Coordinates of midpoint: $\left(-\frac{3}{2}, \frac{3}{2}\right)$.

Gradient of line segment: $m_1 = 1$.

Gradient of perpendicular bisector: $\frac{-1}{m_1} = -1$.

Midpoint $\left(-\frac{3}{2}, \frac{3}{2}\right)$ and gradient m = -1 [M1]

Substitute into the standard form $y - y_1 = m(x - x_1)$ of a line:

$$y - \frac{3}{2} = -\left(x + \frac{3}{2}\right)$$

 $\Rightarrow y = -x.$ [A1]

9

$$\frac{1}{x^3 - 2x^2 + x} = \frac{1}{x(x - 1)^2} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2}.$$
 [M1]

$$\Rightarrow 1 = A(x-1)^2 + Bx(x-1) + Cx$$

$$\Rightarrow A=1$$
, $B=-1$, $C=1$.

Answer:
$$\frac{1}{x} - \frac{1}{x-1} + \frac{1}{(x-1)^2}$$
. [A1]

Total 2 marks

b.
$$\frac{dy}{dx} - \frac{x+1}{\sqrt{1-3x^2}} = 0 \Rightarrow \frac{dy}{dx} = \frac{x+1}{\sqrt{1-3x^2}}$$

$$\Rightarrow y = \int \frac{x+1}{\sqrt{1-3x^2}} dx$$

$$= \int \frac{x}{\sqrt{1-3x^2}} dx + \int \frac{1}{\sqrt{1-3x^2}} dx.$$
 [M1]

• Let
$$I_1 = \int \frac{x}{\sqrt{1 - 3x^2}} dx$$
.

Substitute $u = 1 - 3x^2 \Rightarrow dx = \frac{du}{-6x}$:

$$I_1 = \int \frac{x}{\sqrt{u}} \left(\frac{du}{-6x} \right) = \frac{-1}{6} \int \frac{1}{\sqrt{u}} du$$
 [M1]

$$= \frac{-1}{6} \int u^{-1/2} \ du = \frac{-1}{3} u^{1/2}$$

$$= \frac{-1}{3}\sqrt{1-3x^2} \ .$$

• Let
$$I_2 = \int \frac{1}{\sqrt{1 - 3x^2}} dx$$
.

Substitute
$$u = \sqrt{3}x \Rightarrow dx = \frac{du}{\sqrt{3}}$$
.

$$I_2 = \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{1 - u^2}} \, du$$

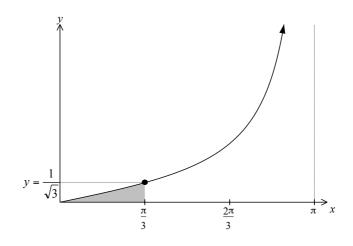
$$= \frac{1}{\sqrt{3}} \sin^{-1}(u) = \frac{1}{\sqrt{3}} \sin^{-1}(\sqrt{3}x).$$

Therefore
$$y = \frac{-1}{3}\sqrt{1-3x^2} + \frac{1}{\sqrt{3}}\sin^{-1}(\sqrt{3}x) + C$$
. [A1]

Deduct 1 mark if the arbitrary constant of integration is not included in the final answer.

$$y = \frac{1}{\sqrt{3}} \Rightarrow \frac{1}{\sqrt{3}} = \tan\left(\frac{x}{2}\right) \Rightarrow \frac{x}{2} = \frac{\pi}{6}$$

[M1]



$$= \pi \int_{0}^{\pi/3} \tan^2\left(\frac{x}{2}\right) dx$$

[M1]

Substitute from the identity $1 + \tan^2(A) = \sec^2(A)$:

$$= \pi \int_{0}^{\pi/3} \sec^2\left(\frac{x}{2}\right) - 1 \, dx$$

$$= \pi \left[2 \tan \left(\frac{x}{2} \right) - x \right]_0^{\pi/3}$$
 [M1]

$$= \pi \left(2 \tan \left(\frac{\pi}{6} \right) - \frac{\pi}{3} \right)$$

$$=\frac{2\sqrt{3}\pi-\pi^2}{3}.$$
 [M1] Total 4 marks

9

The expression $x = v - v^2$ suggests using the form $a = v \frac{dv}{dx}$ for acceleration.

Method 1:

$$x = v - v^2 \Rightarrow \frac{dx}{dv} = 1 - 2v$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{1 - 2v}$$
 [M1]

$$\Rightarrow a = v \frac{dv}{dx} = \frac{v}{1 - 2v}.$$
 [A1]

Method 2:

Use implicit differentiation.

$$x = v - v^2$$

$$\Rightarrow 1 = \frac{dv}{dx} - 2v\frac{dv}{dx}$$
 [M1]

$$\Rightarrow 1 = \frac{dv}{dx}(1 - 2v)$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{1 - 2v}$$

$$\Rightarrow a = v \frac{dv}{dx} = \frac{v}{1 - 2v}.$$
 [A1]

Method 3:

$$x = v - v^2$$

$$\Rightarrow \frac{dx}{dt} = \frac{dv}{dt} - 2v\frac{dv}{dt}$$
 [M1]

$$\Rightarrow v = \frac{dv}{dt}(1 - 2v)$$

$$\Rightarrow \frac{v}{1-2v} = \frac{dv}{dt}$$

$$\Rightarrow a = \frac{dv}{dt} = \frac{v}{1 - 2v}.$$
 [A1]

b.

$$\frac{dv}{dt} = \frac{v}{1 - 2v}$$

$$\Rightarrow \frac{dt}{dv} = \frac{1 - 2v}{v} = \frac{1}{v} - 2$$

$$\Rightarrow t = \int \frac{1}{v} - 2 \, dv$$
 [M1]

$$= \log_e |v| - 2v + C.$$

Substitute v = 1 and t = 0: C = 2.

Therefore $t = \log_e |v| - 2v + 2$.

Substitute $v = \frac{1}{2}$:

$$t = \log_e \left(\frac{1}{2}\right) + 1 = 1 - \log_e(2)$$
.

[A1]

Substitute the double angle formulae into $1 + \cos(2\theta) = \sqrt{3}\sin(2\theta)$:

$$1 + \cos^2(\theta) - \sin^2(\theta) = 2\sqrt{3}\sin(\theta)\cos(\theta)$$

$$\Rightarrow 1 - \sin^2(\theta) + \cos^2(\theta) = 2\sqrt{3}\sin(\theta)\cos(\theta)$$
 [M1]

$$\Rightarrow 2\cos^2(\theta) = 2\sqrt{3}\sin(\theta)\cos(\theta)$$

$$\Rightarrow \cos^2(\theta) = \sqrt{3}\sin(\theta)\cos(\theta)$$

$$\Rightarrow \cos^2(\theta) - \sqrt{3}\sin(\theta)\cos(\theta) = 0$$

$$\Rightarrow \cos(\theta)(\cos(\theta) - \sqrt{3}\sin(\theta)) = 0.$$
 [M1]

Apply the Null Factor Law:

Case 1: $cos(\theta) = 0$

$$\Rightarrow \theta = \frac{(2n-1)\pi}{2}, \quad n \in \mathbb{Z}.$$

Over
$$-\pi \le \theta \le \pi$$
: $\theta = -\frac{\pi}{2}, \frac{\pi}{2}$. [A1]

Case 2:
$$\cos(\theta) - \sqrt{3}\sin(\theta) = 0$$

$$\Rightarrow \cos(\theta) = \sqrt{3}\sin(\theta)$$

$$\Rightarrow \tan(\theta) = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = \frac{\pi}{6} + n\pi, \quad n \in \mathbb{Z}.$$

Over
$$-\pi \le \theta \le \pi$$
: $\theta = -\frac{5\pi}{6}, \frac{\pi}{6}$. [A1]

Total 4 marks

Question 10

a.

i.
$$r = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{4} = 2$$
.

 $\tan(\theta) = -\sqrt{3}$ and θ lies in the fourth quadrant: $\theta = -\frac{\pi}{3}$.

$$1 - i\sqrt{3} = 2\operatorname{cis}\left(-\frac{\pi}{3}\right).$$
 [A1]

ii. Part i. suggests working in polar form.

$$\sqrt{3} + i = 2\operatorname{cis}\left(\frac{\pi}{6}\right).$$
 [M1]

Therefore:

$$\left(\sqrt{3}+i\right)^m = \left(1-i\sqrt{3}\right)^m$$

$$\Rightarrow \left[2\operatorname{cis}\left(\frac{\pi}{6}\right)\right]^{m} = \left[2\operatorname{cis}\left(-\frac{\pi}{3}\right)\right]^{m}$$

$$\Rightarrow 2^m \operatorname{cis}\left(\frac{m\pi}{6}\right) = 2^m \operatorname{cis}\left(-\frac{m\pi}{3}\right).$$
 [M1]

From here there are two options:

Option 1:

$$\operatorname{cis}\left(\frac{m\pi}{6}\right) = \operatorname{cis}\left(-\frac{m\pi}{3}\right)$$

$$\Rightarrow \frac{m\pi}{6} = -\frac{m\pi}{3} + 2k\pi, \quad k \in \mathbb{Z}$$

$$\Rightarrow m = 4k$$
, $k \in \mathbb{Z}^+$ (since $m \in \mathbb{Z}^+$ is given in the question). [A1]

Option 2:

$$\frac{\left[2\operatorname{cis}\left(\frac{m\pi}{6}\right)\right]^{m}}{\left[2\operatorname{cis}\left(-\frac{m\pi}{3}\right)\right]^{m}} = 1 \qquad \Rightarrow \left(\frac{2\operatorname{cis}\left(\frac{m\pi}{6}\right)}{2\operatorname{cis}\left(-\frac{m\pi}{3}\right)}\right)^{m} = 1$$

$$\Rightarrow \left[\operatorname{cis}\left(\frac{\pi}{2}\right)\right]^m = 1 = \operatorname{cis}(2k\pi), \quad k \in \mathbb{Z}$$

$$\Rightarrow \operatorname{cis}\left(\frac{m\pi}{2}\right) = \operatorname{cis}(2k\pi), \quad k \in \mathbb{Z}$$

$$\Rightarrow \frac{m\pi}{2} = 2k\pi$$

 $\Rightarrow m = 4k$, $k \in \mathbb{Z}^+$ (since $m \in \mathbb{Z}^+$ is given in the question).

[A1]

b.

Method 1: Cartesian form approach.

Substitute $z = x + iy \Rightarrow \overline{z} = x - iy$:

$$z^2 = i\overline{z}$$

$$\Rightarrow (x+iy)^2 = i(x-iy)$$

$$\Rightarrow x^2 + 2xyi - y^2 = ix + y$$

$$\Rightarrow x^2 - y^2 + 2xyi = y + ix.$$
 [M1]

Equate real and imaginary parts:

$$x^2 - y^2 = y.(1)$$

$$2xy = x$$

$$\Rightarrow 2xy - x = 0$$

$$\Rightarrow x(2y-1) = 0. \tag{2}$$

Both equations [M1]

From equation (2) (using the null factor law):

Case 1: x = 0.

Substitute
$$x = 0$$
 into equation (1): $-y^2 = y$

$$\Rightarrow y^2 + y = 0$$

$$\Rightarrow y(y+1) = 0$$

$$\Rightarrow v = 0, -1.$$

Therefore z = 0 or z = -i. [A1]

Case 2: $2y - 1 = 0 \Rightarrow y = \frac{1}{2}$.

Substitute
$$y = \frac{1}{2}$$
 into equation (1): $x^2 - \frac{1}{4} = \frac{1}{2}$

$$\Rightarrow x^2 = \frac{3}{4}$$

$$\Rightarrow x = \pm \frac{\sqrt{3}}{2}$$
.

Therefore
$$z = \frac{\sqrt{3}}{2} + \frac{i}{2}$$
 or $z = -\frac{\sqrt{3}}{2} + \frac{i}{2}$. [A1]

Solutions:
$$z = 0$$
, $z = -i$, $z = \frac{\sqrt{3}}{2} + \frac{i}{2}$, $z = -\frac{\sqrt{3}}{2} + \frac{i}{2}$.

The solutions from the two cases do not need to be consolidated into a final answer.

Method 2: Polar form approach.

Substitute
$$z = r \operatorname{cis}(\theta) \Rightarrow \overline{z} = r \operatorname{cis}(-\theta)$$
:

$$z^2 = i\overline{z}$$

$$\Rightarrow r^2 \operatorname{cis}(2\theta) = ir \operatorname{cis}(-\theta)$$

$$\Rightarrow r^2 \operatorname{cis}(2\theta) = r \operatorname{cis}\left(\frac{\pi}{2}\right) \operatorname{cis}(-\theta)$$

$$\Rightarrow r^2 \operatorname{cis}(2\theta) = r \operatorname{cis}\left(\frac{\pi}{2} - \theta\right).$$

Equate moduli:

$$r^2 = r$$

$$\Rightarrow r^2 - r = 0$$

$$\Rightarrow r(r-1) = 0$$

$$\Rightarrow r = 0, 1$$
.

[M1]

Equate arguments:

$$2\theta = \frac{\pi}{2} - \theta + 2k\pi, \ k \in \mathbb{Z}$$

$$3\theta = \frac{\pi}{2} + 2k\pi$$

$$\Rightarrow \theta = \frac{\pi}{6} + \frac{2k\pi}{3}.$$

[M1]

Case 1: r = 0.

$$z = 0$$
.

Case 2: r = 1.

$$z = \operatorname{cis}\left(\frac{\pi}{6} + \frac{2k\pi}{3}\right), \ k \in \mathbb{Z}.$$

$$\underline{k=0}$$
: $z = \operatorname{cis}\left(\frac{\pi}{6}\right)$.

$$\underline{k=1}$$
: $z = \operatorname{cis}\left(\frac{5\pi}{6}\right)$.

Convert into the form
$$a + ib$$
: $z = \frac{\sqrt{3}}{2} + \frac{i}{2}$, $z = -\frac{\sqrt{3}}{2} + \frac{i}{2}$.

[A1]

$$\underline{k = -1}: \quad z = \operatorname{cis}\left(-\frac{3\pi}{6}\right) = \operatorname{cis}\left(-\frac{\pi}{2}\right) = -i.$$

$$z = 0, \quad z = -i.$$
 [A1]