

Units 3 and 4 Specialist Maths: Exam 2

Practice Exam Solutions

Stop!

Don't look at these solutions until you have attempted the exam.

Found a mistake?

Check the Engage website for updated solutions, then email practiceexams@ee.org.au.

Want to have your exam marked for you?

Visit www.engageeducation.org.au/exam-marking for more information.

Section A - Multiple-choice questions

Question 1

The correct answer is A.

It is clear that -2 is the only real valued solution. Hence, the remaining two solutions must be complex conjugates of one another; it suffices to find one. We can express z^3 in polar form as $z^3 = 8 \operatorname{cis}(\pi)$. By De Moivre's theorem, $z = 2 \operatorname{cis}\left(\frac{\pi}{3}\right) = 1 + \sqrt{3}i$ is a solution. Therefore, $z = 1 - \sqrt{3}i$ is a solution.

Question 2

The correct answer is D.

Shaded area is contained between circles of radius 3 (inclusive) and 4 (exclusive), below the perpendicular bisector of the line connecting z = -i and z = 1.

Question 3

The correct answer is B.

Asymptotes occur when $2x + \frac{\pi}{4} = k\pi$, for any integer k. Rearranging in terms of x gives $x = \frac{(4k-1)\pi}{8}$. Substituting appropriate values of k gives the desired result.

Question 4

The correct answer is D.

Question 5

The correct answer is C.

Radius is 50mm, so the height is 120mm ((5,12,13) is a Pythagorean triple). As radius and height are in equal proportion at any depth, $r=\frac{12}{5}h$. We can then express V in terms of h only as $V=\frac{1}{3}\pi\left(\frac{12}{5}h\right)^2h=\frac{48}{25}\pi h^3$. Then, by using the chain rule, $\frac{dV}{dt}=\frac{dV}{dh}\frac{dh}{dt}=\frac{144}{25}\pi h^2\times\frac{5}{4\pi}=\frac{36h^2}{5}$

Question 6

The correct answer is B.

 $\frac{dy}{dx}=Ake^{kx}$ and $\frac{d^2y}{dx^2}=Ak^2e^{kx}$. Therefore we need to solve $Ak^2e^{kx}=-4Ae^{kx}(k+1)$. Dividing through by common terms and rearranging gives us the quadratic equation $k^2+4k+4=0$, which has the unique solution k=-2.

Question 7

The correct answer is B.

The angle subtended by the circumference at any point on the circle (except A and C) is a right angle. So $\overline{CB} = 2r \sin \alpha$. Also $\angle BCA$ is $\frac{\pi}{2} - \alpha$. As \overline{DB} is perpendicular to the circumference, $\sin \left(\frac{\pi}{2} - \alpha\right) = \frac{\frac{1}{2}\overline{DB}}{\overline{CB}}$, so

$$\overline{DB} = 2\overline{CB}\sin\left(\frac{\pi}{2} - \alpha\right) = 2(2r\sin\alpha)\cos\alpha = 2r\left(2\sin\alpha\cos\alpha\right) = 2r\sin(2\alpha)$$

Question 8

The correct answer is B.

$$|\mathbf{b}| = \sqrt{1^2 + 2^2 + 1^2}$$
, so $\hat{\mathbf{b}} = \frac{1}{\sqrt{6}}(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$.

$$(a \cdot b) \frac{\hat{b}}{|b|} = (3 - 8 - 1) \frac{1}{6} b = -b$$

Question 9

The correct answer is C.

If $\cos \theta = \frac{2}{7}$, then $\sin \theta = \frac{\sqrt{7^2 - 2^2}}{7} = \frac{3\sqrt{5}}{7}$. Evaluate $\tan^{-1}(\sin \theta)$ using a calculator.

Question 10

The correct answer is A.

Make the observation that f(x) can be expressed as $f(x) = \frac{\frac{d}{dx}(2x+3)}{(2x+3)^2+1}$ which looks very similar to the derivative of the inverse tangent function. Making the substitution u = 2x + 3 and yields the result $\int f(x)dx = \tan^{-1}(2x+3) + c$

Question 11

The correct answer is D.

Acceleration down plane is $mg \sin \theta = 6g \sin 25^\circ = 24.9 \, N$ down the plane. The maximum friction is $\mu \, mg \cos \theta = 3m \cos 25^\circ = 26.6 \, N$ up the plane. 26.6 > 24.9. Hence the friction is 24.9N up the plane.

Question 12

The correct answer is A.

Given the shape and that the intersection of the asymptotes of the hyperbola is (3,1), the equation must be of the form $\frac{(x-3)^2}{a^2} - \frac{(y-1)^2}{b^2} = 1$. As $\theta = \frac{\pi}{3}$, we can find the acute angle made by each asymptote and the x-axis which also turns out to be $\frac{\pi}{3}$. Therefore, the gradients of the asymptotes are $\pm \frac{b}{a} = \pm \tan \frac{\pi}{3} = \pm \sqrt{3}$. Hence possible values for a^2 and b^2 are 1 and 3, respectively.

Question 13

The correct answer is E.

We need to evaluate an integral of the form $\int_0^2 \pi \cdot \left(\frac{\pi}{2}\right)^2 dx - \int_0^2 \pi x(y)^2 dx = \int_0^2 \pi \left(\left(\frac{\pi}{2}\right)^2 - \left(x(y)\right)^2\right) dx$ (n.b. x(y) denotes x as a function of y, i.e. $y(y) = \frac{\cos^{-1}(1-y)}{2}$): we find the volume of a cylinder and then 'hollow it out' by subtracting the volume we don't need. Evaluate using a calculator.

Question 14

The correct answer is D.

Question 15

The correct answer is A.

Look at the intercepts.

Question 16

The correct answer is B.

$$\frac{dy}{dx} = 2\cos(2x) + 2\sin(2x)$$
 and $\frac{d^2y}{dx^2} = -4\sin(2x) + 4\cos(2x)$.

Question 17

The correct answer is C.

$$4\cos 60^{\circ} = 2N$$
, and $4\sin 60^{\circ} = 2\sqrt{3}N$. Therefore $|F_{net}| = \sqrt{(5-2\sqrt{3})^2 + (3-2)^2} = 1.83N$

Question 18

The correct answer is C.

Solve $\int_0^k 20 dt = \int_0^k 5\sqrt{t} dt$ for k. Evaluating integrals and factorizing gives $10k\left(2-\frac{1}{3}\sqrt{k}\right)=0$, which has non-trivial solution $\sqrt{k}=6 \Rightarrow k=36$

Question 19

The correct answer is C.

Look at key features of the slope field; there are exactly two lines along which the gradient is zero (corresponds to a quadratic). More decisively, the gradient is independent of x; along any line y=c, where c is a constant, the gradient is the same; C is the only option where $\frac{dy}{dx}$ is independent of x.

Question 20

The correct answer is D.

$$\dot{r}(t) = 2\cos(t)\,i - 2\sin(t)\,j - \frac{\pi^2}{\left(t + \frac{\pi}{2}\right)^2}k$$
. Evaluating $|\dot{r}(0)|$ gives $\sqrt{20} = 2\sqrt{5}$

Question 21

The correct answer is C.

Simple evaluation

Question 22

The correct answer is A.

Use Newton's 2^{nd} Law, F = ma. Note speed is a positive quantity by definition (magnitude of velocity)

Section B - Short-answer questions

Marks allocated are indicated by a number in square brackets, for example, [1] indicates that the line is worth one mark.

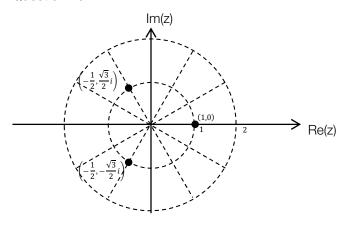
Question 1a i

Find the complex polar representation of 1, i.e. $1 = cis(0 + 2n\pi)$, where n is an integer.

So $z^3=\mathrm{cis}(2n\pi)$, and by De Moivre's theorem, $z=\mathrm{cis}(\frac{2n\pi}{3})$ [1]

So the possible values of z are $\operatorname{cis}(0)=1$, $\operatorname{cis}\left(\frac{2\pi}{3}\right)=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ and $\operatorname{cis}\left(\frac{4\pi}{3}\right)=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$ [1].

Question 1a ii



[1 for correct markings, 1 for correct labels]

Question 1b i

Observe that $i^3 = -i$, so $(-i)^3 = i$. [1]

Now if $w^3 = 1$, then $(-iw)^3 = (-i^3)(w^3) = i$. Therefore, k = -i. [1]

Question 1b ii

The geometric interpretation of multiplication by i is a rotation of $\frac{\pi}{2}$ radians counter clockwise. So multiplication by k corresponds to rotation $\frac{3\pi}{2}$ counter clockwise [1].

Therefore, the solutions are $cis\left(\frac{3\pi}{2}\right)$, $cis\left(\frac{\pi}{6}\right)$ and $cis\left(\frac{5\pi}{6}\right)$ [1].

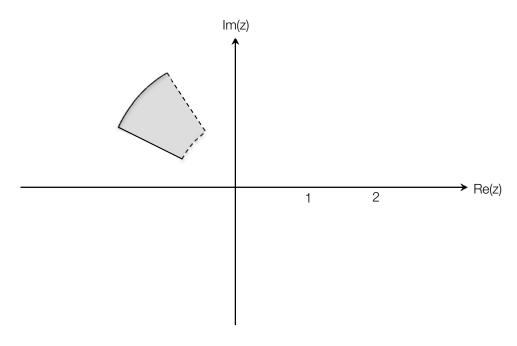
Question 1c

$$z_1 = \operatorname{cis}\left(\frac{2\pi}{3}\right)$$
 and $z_2 = \operatorname{cis}\left(\frac{5\pi}{6}\right)$ [1].

 $|z-z_1|=|z-z_2|$ describes the perpendicular bisector of the line joining these points. As both z_1 and z_2 have the same magnitude, the bisector must pass through the origin (n.b the bisector of a chord passes through the centre of the circle). The angle halfway between $\frac{4\pi}{6}$ and $\frac{5\pi}{6}$ is $\frac{9\pi}{12}=\frac{3\pi}{4}$, so the Cartersian equation is y=-x. [1]

Question 1d

[2 for correct shape, 1 for correct boundaries]



The first part of the set describes the set of points whose distance from iz_1 is strictly less that the distance from $-iz_1 = i^3z_1$: i.e. the set of all points below the line joining z_1 to the origin. Similarly, the second part describes the set of points whose distance from iz_2 is greater than or equal to the distance from i^3z_2 : i.e. the set of points above the line joining z_2 to the origin. The third part requires that the magnitude of z is less than or equal to 2, but strictly greater than 1.

Question 2a

$$f'(x) = \frac{-3}{1+x^2} + \frac{(x^2+1)(2) - (2x)(2x)}{(x^2+1)^2} + x^2 + 1$$

applying appropriate rules [1]

$$f'(x) = -\frac{1}{x^2 + 1} - \frac{4x^2}{(x^2 + 1)^2} + \frac{x^4 + 2x^2 + 1}{x^2 + 1}$$

$$f'(x) = \frac{(x^4 + 2x^2)(x^2 + 1) - 4x^2}{(x^2 + 1)^2}$$

$$f'(x) = \frac{x^6 + 2x^4 + x^4 + 2x^2 - 4x^2}{(x^2 + 1)^2}$$

$$f'(x) = \frac{x^2(x^4 + 3x^2 - 2)}{(x^2 + 1)^2}$$

Question 2b

$$f'(x) = 0 \Leftrightarrow -x^2(x^4 + 3x^2 - 2) = 0$$

Let
$$u = x^2$$
, then $u(u^2 + 3u - 2) = 0$

$$u = \frac{-3 \pm \sqrt{9+8}}{2}$$

$$x = \sqrt{u} = \pm \sqrt{\frac{-3 + \sqrt{17}}{2}}$$

$$x = 0$$
, $x = \sqrt{\frac{-3+\sqrt{17}}{2}}$, $x = -\sqrt{\frac{-3+\sqrt{17}}{2}}$

correct manipulation [1]

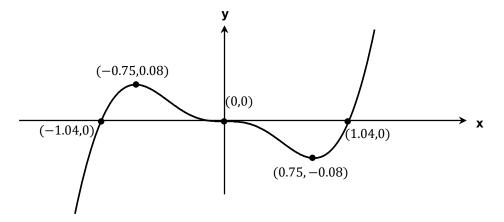
correct answer [1]

as the denominator of f'(x) is always positive observing that the function is a cubic in x^2 [1] solving the quadratic term of the cubic [1]

solving for x, requiring x to be real-valued [1]

listing solutions of f'(x) = 0 [1]

Question 2b



[2 for correct shape, 1 for correct intercepts, 1 for correct turning points]

Question 2c

$$\int f(x)dx = -3\int \tan^{-1} x \ dx + \int \frac{2x}{x^2 + 1} dx + \int \frac{x^3}{3} + x \, dx$$

$$-3\int \tan^{-1} x \ dx = -3(x \tan^{-1} x - \frac{1}{2} \log_e(x^2 + 1))$$
 [1]
$$\int \frac{2x}{x^2 + 1} dx = \int \frac{1}{u} du = \log_e u = \log_e(x^2 + 1)$$
 substituting $u = x^2 + 1$ [1]
$$\int \frac{x^3}{3} + x \, dx = \frac{x^4}{12} + \frac{x^2}{2}$$

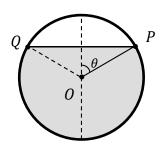
Therefore,

$$\int f(x)dx = -3\left(x\tan^{-1}x - \frac{1}{2}\log_e(x^2 + 1)\right) + \log_e(x^2 + 1) + \frac{x^4}{12} + \frac{x^2}{2}$$
$$= -3x\tan^{-1}x + \frac{5}{2}\log_e(x^2 + 1) + \frac{x^4}{12} + \frac{x^2}{2}[1]$$

Question 3a

 $V=20m^3$, and the surface area of the circle is π m^2 . Therefore, $L=\frac{20}{\pi}$ m [1]

Question 3b i



Area of the sector subtended by the angle $\angle POQ$ is given by $\frac{2\theta}{2\pi}\pi r^2 = \theta$ [1/2]. The area of the triangle $\triangle POQ$ is given by $\sin \theta \times \cos \theta = \frac{1}{2}\sin 2\theta$ [1/2]. So the area of the unshaded segment is given by $\theta - \frac{1}{2}\sin(2\theta)m^2$ [1].

Question 3b ii

The total volume is $20m^3$, and the unfilled volume is $\left(\theta - \frac{1}{2}\sin(2\theta)\,m^2\right) \times L$ [1]. So the amount of water in the tank as a function of θ is $V = 20 - \frac{L}{2}(2\theta - \sin(2\theta))$, where $0 \le \theta \le \pi$, as these are the only values θ can physically take. [1]

Question 3b iii

Take the derivative with respect to time of both sides of the equation in part ii.

$$\frac{dV}{dt} = \frac{d}{dt} \left(20 - \frac{L}{2} (2\theta - \sin(2\theta)) \right) = \frac{d\theta}{dt} \frac{d}{d\theta} \left(20 - \frac{10}{\pi} (2\theta - \sin(2\theta)) \right) = \frac{d\theta}{dt} \left(-\frac{20}{\pi} (1 - \cos(2\theta)) \right) [2]$$

Rearranging in terms of $\frac{d\theta}{dt}$, given that $\frac{dV}{dt} = -2$:

$$\frac{d\theta}{dt} = \frac{\pi}{10(1-\cos(2\theta))} [1]$$

Question 3c

$$\theta(0.1) = \theta(0) + \Delta t \left(\frac{d\theta}{dt}\right)_{t=0} = 0 + 0.1 \times \frac{\pi}{10} = \frac{\pi}{100}$$
 [1]

$$\theta(0.2) = \theta(0.1) + \Delta t \left(\frac{d\theta}{dt}\right)_{t=0.1} = \frac{\pi}{100} + 0.1 \times \frac{\pi}{10(1-\sin(0.2))}$$
[1]

$$\theta(0.3) = \theta(0.2) + \Delta t \left(\frac{d\theta}{dt}\right)_{t=0.2} = \left(\frac{\pi}{100} + 0.1 \times \frac{\pi}{10(1-\sin(0.2))}\right) + 0.1 \times \frac{\pi}{10(1-\sin(0.4))} \approx 0.122 \ rad/s \ [1]$$

Question 4a

$$|r(t)| = \sqrt{(2t)^2 + \left(2e^{-\frac{t^2}{10}}\cos{\frac{\pi t}{5}}\right)^2 + \left(2e^{-\frac{t^2}{10}}\sin{\frac{\pi t}{5}}\right)^2}$$
 displacement is given by the $|r(t)|$ [1]

$$= \sqrt{4t^2 + \left(4e^{-\frac{t^2}{5}}\right)\left(\cos\left(\frac{\pi t}{5}\right)^2 + \sin\left(\frac{\pi t}{5}\right)^2\right)}$$
 rearranging

$$=2\sqrt{t^2+e^{-\frac{t^2}{5}}}$$
 [1]

Question 4b

$$\dot{\mathbf{r}}(t) = \frac{d}{dt} (2t)\mathbf{i} + \frac{d}{dt} \left(2e^{-\frac{t^2}{10}} \cos \frac{\pi t}{5} \right) \mathbf{j} + \frac{d}{dt} \left(2e^{-\frac{t^2}{10}} \sin \frac{\pi t}{5} \right) \mathbf{k}$$

$$\frac{d}{dt}(2t) = 2$$

$$\frac{d}{dt}\left(e^{-\frac{t^2}{10}}\cos\frac{\pi t}{5}\right) = \frac{d}{dt}\left(e^{-\frac{t^2}{10}}\right)\cos\frac{\pi t}{5} + \frac{d}{dt}\left(\cos\frac{\pi t}{5}\right)e^{-\frac{t^2}{10}} = -\frac{te^{-\frac{t^2}{10}}}{5}\cos\frac{\pi t}{5} - \frac{\pi}{5}\sin\frac{\pi t}{5}e^{-\frac{t^2}{10}}$$
[1]

$$\frac{d}{dt}\left(e^{-\frac{t^2}{10}}\sin\frac{\pi t}{5}\right) = \frac{d}{dt}\left(e^{-\frac{t^2}{10}}\right)\sin\frac{\pi t}{5} + \frac{d}{dt}\left(\sin\frac{\pi t}{5}\right)e^{-\frac{t^2}{10}} = -\frac{te^{-\frac{t^2}{10}}}{5}\sin\frac{\pi t}{5} + \frac{\pi}{5}\cos\frac{\pi t}{5}e^{-\frac{t^2}{10}}$$
 [1]

$$\dot{r}(t) = 2i - \frac{2e^{-\frac{t^2}{10}}}{5} \left(t \cos \frac{\pi t}{5} + \pi \sin \frac{\pi t}{5} \right) j + \frac{2e^{-\frac{t^2}{10}}}{5} \left(-t \sin \frac{\pi t}{5} + \pi \cos \frac{\pi t}{5} \right) k$$
[1]

Question 4c

$$|r(5)| = 2\sqrt{25 + e^{-5}} \approx 10m$$
 [1/2]

$$\dot{r}(5) = 2i - \frac{2e^{-\frac{5}{2}}}{5}(-5)j + \frac{2e^{-\frac{5}{2}}}{5}(-\pi)k$$
 [1/2]

$$|\dot{r}(5)| = \sqrt{4 + 4e^{-5} + \frac{4\pi}{25}e^{-5}} \approx 2 \, m/s$$
 [1]

Question 5a

The gradient of the ramp is given by $\frac{dy}{dx} = \frac{x}{2}$, so $\tan(\theta) = \frac{x}{2}$ [1]

Then, the magnitude of the normal is given by $|F_n| = mg \cos \theta = 49 \frac{2}{\sqrt{x^2+4}}$ [1]

We now need to resolve this into components parallel to the axes. A little geometric manipulation yields that the horizontal component is $-F_n \sin \theta$, and the vertical component is $F_n \cos \theta$ [1]

Therefore,
$$F_{normal} = -49 \frac{4}{x^2+4} \mathbf{i} + 49 \frac{2x}{x^2+4} \mathbf{j} = \frac{196}{x^2+4} \mathbf{i} + \frac{98x}{x^2+4} \mathbf{j}$$
 [1]

Question 5b i

As before, the gradient of the ramp at a point is given by $\frac{dy}{dx} = \frac{x}{2}$, and $\tan(\theta) = \frac{x}{2}$. The magnitude of the force tangent to the ramp (and therefore parallel to the direction of acceleration of the mass), is $|F| = mg \sin \theta = 49 \frac{2x}{\sqrt{x^2+4}}$ [1]

Then $a = \frac{19.6x}{\sqrt{x^2+4}}$ by Newton's second law [1]

Question 5b ii

As $a = \frac{d}{dx} \frac{1}{2} v^2$, we integrate both sides with respect to x from x = k to x = 0 (we reverse the limits to account for the direction of acceleration) and solve for v [1]. We will have to do a u-substitution, so choose $u = x^2 + 4$, then $\frac{du}{dx} = 2x$ [1].

$$\frac{1}{2}v^2 = \int_k^0 \frac{19.6x}{\sqrt{x^2+4}} dx = \int_{k^2+4}^4 \frac{19.6x}{\sqrt{u}} \frac{1}{2x} du = 9.8 \left[\frac{1}{2} \sqrt{u} \right]_{k+4}^4 = 4.9 \left(\sqrt{k^2+4} - 2 \right) [2]$$

Therefore,

$$v = \sqrt{9.8(\sqrt{k^2 + 4} - 2)} [1]$$

(we ignore the negative root as speed must be positive)

Question 5b iii

Evaluating v at a=2 gives $v=\sqrt{9.8\big(2\sqrt{2}-2\big)}=2.84$ m/s [1]