

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

	STUDENT NUMBER					Letter		
Figures								
Words								

SPECIALIST MATHEMATICS

Written examination 1

Thursday 10 November 2011

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 9 pages with a detachable sheet of miscellaneous formulas in the centrefold
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer all questions in the spaces provided.

Unless otherwise specified an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude g m/s², where g = 9.8.

A	4
Question	-1
Z COLOII	-

Find an antiderivative of $\frac{1+x}{9-x^2}$, $x \in R \setminus \{-3, 3\}$; }.
---	-------------

3	marke
2	marks

Question 2

Find the value of the real constant k given that kxe^{2x} is a solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = e^{2x}(15x + 6).$$

Question 3

a. Show that $f(x) = \frac{2x^2 + 3}{x^2 + 1}$ can be written in the form $f(x) = 2 + \frac{1}{x^2 + 1}$.

1 mark

b. Sketch the graph of the relation $y = \frac{2x^2 + 3}{x^2 + 1}$ on the axes below. Label any asymptotes with their equations and label any intercepts with the axes, writing them as coordinates.

3 marks

c. Find the area enclosed by the graph of the relation $y = \frac{2x^2 + 3}{x^2 + 1}$, the x-axis, and the lines x = -1 and x = 1.

Ou	acti	nn	1
Out	2SH (on	4

Consider $z = \frac{1 - \sqrt{3}i}{-1 + i}$, $z \in C$.

Find the principal argument of z in the form $k\pi$, $k \in R$.

3 marks

Question 5

For the curve with parametric equations

$$x = 4\sin(t) - 1$$
$$y = 2\cos(t) + 3$$

find $\frac{dy}{dx}$ at the point $(1, \sqrt{3} + 3)$.

Ouestion	6
Quesuon	ιo

Evaluate	$\int_0^1 e^x \cos x$	(e^x)	dx.
----------	-----------------------	---------	-----

2 marks

Question 7

A flowerpot of mass m kg is held in equilibrium by two light ropes, both of which are connected to a ceiling. The first rope makes an angle of 30° to the vertical and has tension T_1 newtons. The second makes an angle of 60° to the vertical and has tension T_2 newtons.

a.	Show that T	$T_2 = \frac{T_1}{\sqrt{3}}$
----	-------------	------------------------------

4		
	marl	~
	ппап	`

b.	The first rope is strong, but the second rope will break if the tension in it exceeds 98 newtons
	Find the maximum value of m for which the flowerpot will remain in equilibrium.

Question 8

Find the **coordinates** of the points of intersection of the graph of the relation

$y = \csc^2\left(\frac{\pi x}{6}\right)$ with the line $y = \frac{4}{3}$, for $0 < x < 12$.	

Question 9

Consider the three vectors

 $\mathbf{a} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + m\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, where $m \in R$.

a. Find the value(s) of *m* for which $\begin{vmatrix} b \\ \end{vmatrix} = 2\sqrt{3}$.

2 marks

b. Find the value of m such that a is perpendicular to b.

1 mark

c. i. Calculate 3c - a.

ii. Hence find a value of m such that a, b and c are linearly dependent.

1 + 1 = 2 marks

\sim	4.0	-	^
()	uestion	1	u

Consider the relation $y \log_e(x) = e^{2y} + 3x - 4$. Evaluate $\frac{dy}{dx}$ at the point (1, 0). 4 marks **Question 11** The region in the first quadrant enclosed by the curve $y = \sin(x)$, the line y = 0 and the line $x = \frac{\pi}{6}$ is rotated about the *x*-axis. Find the volume of the resulting solid of revolution.

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

SPECMATH

Specialist Mathematics Formulas

2

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$
 $\cot^2(x) + 1 = \csc^2(x)$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
 $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

function	\sin^{-1}	\cos^{-1}	tan^{-1}
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \text{Arg } z \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$
 $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$$

$$\int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\int \frac{d}{dx} \left(\sin^{-1}(x) \right) = \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$$

$$\int \frac{a}{a^2+x^2} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

SPECMATH

Vectors in two and three dimensions

$$\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$$

$$|\overset{\mathbf{r}}{_{\sim}}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$r_{1}, r_{2} = r_{1}r_{2}\cos\theta = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\dot{\mathbf{i}} + \frac{dy}{dt}\dot{\mathbf{j}} + \frac{dz}{dt}\dot{\mathbf{k}}$$

Mechanics

momentum: p = mv

equation of motion: R = m a

friction: $F \le \mu N$