Trial Examination 2011 # VCE Specialist Mathematics Units 3 & 4 ## Written Examination 2 ## **Formula Sheet** #### **Directions to students** Detach this formula sheet during reading time. This formula sheet is provided for your reference. #### **SPECIALIST MATHEMATICS FORMULAS** ## Mensuration* area of a trapezium: $\frac{1}{2}(a+b)h$ curved surface area of a cylinder: $2\pi rh$ volume of a cylinder: $\pi r^2 h$ volume of a cone: $\frac{1}{3}\pi r^2 h$ volume of a pyramid: $\frac{1}{3}Ah$ volume of a sphere: $\frac{4}{3}\pi r^3$ area of a triangle: $\frac{1}{2}bc\sin A$ sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ cosine rule: $c^2 = a^2 + b^2 - 2ab\cos C$ ## **Coordinate geometry** ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ ## Circular (trigonometric) functions $\cos^2(x) + \sin^2(x) = 1$ $1 + \tan^2(x) = \sec^2(x)$ $\cot^2(x) + 1 = \csc^2(x)$ $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$ $\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$ $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ $\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$ $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$ $\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$ $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$ $\sin(2x) = 2\sin(x)\cos(x)$ $\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$ | function | sin ⁻¹ | cos ⁻¹ | tan ⁻¹ | |----------|---|-------------------|---| | domain | [-1, 1] | [-1, 1] | R | | range | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ | $[0,\pi]$ | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ | #### Algebra (complex numbers) $$z = x + yi = r(\cos\theta + i\sin\theta) = r\operatorname{cis}\theta$$ $$|z| = \sqrt{x^2 + y^2} = r$$ $$-\pi < \operatorname{Arg}(z) \le \pi$$ $$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$ $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$ $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem) #### **Calculus** $$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$$ $$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$ $$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$ $$\int \frac{1}{x} dx = \log_e|x| + c, \text{ for } x > 0$$ $$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$ $$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$ $$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$ $$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$ $$\int \sec^2(ax)dx = \frac{1}{a}\tan(ax) + c$$ $$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, \ a > 0$$ $$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}} \qquad \qquad \int \frac{-1}{\sqrt{a^2-x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, \ a > 0$$ $$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$$ $$\int \frac{a}{a^2+x^2} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$ product rule: $$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$ quotient rule: $$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$ chain rule: $$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$ Euler's method: If $$\frac{dy}{dx} = f(x)$$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$ acceleration: $$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$ constant (uniform) acceleration: $$v = u + at$$ $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$ ## Vectors in two and three dimensions $$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$ $$|\underline{\mathbf{r}}| = \sqrt{x^2 + y^2 + z^2} = r$$ $$\underline{\mathbf{r}}_1 \cdot \underline{\mathbf{r}}_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$$ $$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$ #### Mechanics momentum: p = mv equation of motion: $\mathbf{R} = m\mathbf{a}$ sliding friction: $F \leq \mu N$ ## END OF FORMULA SHEET