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VCE Specialist Mathematics Units 3 & 4 Trial Examination Suggested Solutions

Question 1

Two correct branches crossing the x-axis at (=1, 0). Al
Asymptotes y = *x. Al
WE
b. Let the volume be V, where V = nJ‘ yzdx and y2 =x—1.
1
3 NE
= [x— - x} Al
3 1
= (3= 3)-(3-1)]
= 2?7[ (cubic units) Al
Question 2
a. N
AN / P
60°
F¢ S0 hioal DR
floor
A4
8 Al
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VCE Specialist Mathematics Units 3 & 4 Trial Examination 1 Suggested Solutions

b. The body is moving, hence F = % .

2
Vertical: N =g — Psin(60°), i.e. N=g—%. Al
Horizontal: a:Pcos(60°)——Iy—,i.e. a:B——Iy—. Al
2 2
Substituting N =g — —-@—E into a = PN gives a = P_ ——I—(g - —J—E—Ij)
2 2 NG 2
a= P_s + —[?LE (or equivalent)
2 2 242
So a = E_____“/__%_g + _@ . Al
2 4
Note: a = P_sg + 3/—3—12 (or equivalent) is needed for the final Al.
N2 242
Question 3
Let u = sin(x) and so %L—t = cos(x). When x =0, u =0 and when x:%, u=1.
X
3 1
So J‘ ~9—(—)§—(—)2—C—)——dx :J‘ L sdu Al
1 +sin”(x) 1+u
0 0
-1 1
=[tan (u)],
= tan_l(l) - tan_l(O)
=7
4 Al
Question 4
: . (i+j+k)-(5i-j-k) 1
Using the scalar product, i.e. cos(f) = =—=—= === and so cos(f) ==. M1
J3./27 3
Using cos(8) = 2cos2( g) —1, we obtain 2cos2( g) -1= % Ml
ng 2c05( 0) 121 in cos( ) =2
Rearranging 2cos ( > 1= 3 we obtain cos 2)=5 Al
As 6 is an acute angle, we reject cos( g) = —ﬁ and so cos( g) = % Al
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VCE Specialist Mathematics Units 3 & 4 Trial Examination Suggested Solutions

Question 5
Using implicit differentiation to differentiate X+ xy=e': Ml
2x+y+ x% = eyj—i} (or equivalent) Al

Let the gradient of the normal be m, .

At (=1,0), & =1 and so my is 1. Al
dx
So the equation of the normalis y=x+1. Al
Question 6
Attempting to use a = 5)—6(%\/2) . M1
41 3 1
dx\2 R
12 3 1
2" T j( R Ja
-3 + 1 + ¢ where c is an arbitrary constant Al
2 X
2x
So 2= -3.,2 . .
oV =—+ P + k, where k is an arbitrary constant.

X

Giventhat v=0 at x=1,wefindthat 0 =-3+2+k,ie. k=1.

Hence,v2::§+g+1. Ml

x X

2
o . . .2 —
Writing as a single fraction, we obtain v = )—C-——i—z—g———é .

by
*+2x-3
Taking the square root of both sides we obtain v =+ % .
by
As a>0 when x =1, v is initally positive. Al
x4 2x-3
Hence, v="——="_= forx>1. Al

X
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VCE Specialist Mathematics Units 3 & 4 Trial Examination 1 Suggested Solutions

Question 7

a. [r(0)] = Wsin’(21) + deos’ (1) M1

= Jasin®(1)cos() + 4cos’(r) (using sin(2f) = 2sin(1)cos (7)) Al

= A/4cos2(t)(1 +sin’(1))

= 2.J(1 = sin®(1))(1 + sin’()) (using cos’(¢) = 1 — sin(1)) Al

Hence |£(t)‘ =241-sin*(7). Al

Note: Only award the last Al if the previous line of work is present.

b.  The minimum value of sin*(¢) is zero, and so |r(t)|max =2 Al

‘r(t)‘max occurs at t =nm, wheren=0,1,2,3, ... Al

Question 8

(z4 —cis(0)) =0 or (z4 —cis(-0)) =0 where 2cos(0)=1.

2cos(0) =1 and so 0:%. Al
z4 = cis(%r) or z4 = cis(—%[) . Al
z=cis(£+&) 0rz=cis(—£+@),wherek62. M1
12 4 12 4
. 7 . Sn) . ( 7n) . ( lln)
= cis| +— +== += +—=
Hence, 7 Cls(_IZ)’ 015(_ ) cis 5 , Cis| = ) Al Al

Note: Award Al for cis(iln—z) and cis(isl—;t) , and Al for cis(i%) and cis(illl—zn) .
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Question 9
tan(tan_l( 1 D + tan(tan_l( lD
m n
. _ tan( J;L’) (tan(x + y) = tan(x) + tan(y)
1 /1 4 1 —tan(x)tan(y)
1- tan(tan ( — D tan (tan ( - ))
m n
1,1
So M _n__q M1
1 1
l-—x-
m n
mt nl =1 (multiplying numerator and denominator of the LHS by mn) Al
mn —

mn-m-n—-1=0

mn-1)—-n-1=0

m(n—1)-n+1=2 (adding 2 to both sides) M1
mn-1)-1(n-1)=2
(m-1)(n-1)=2 Al
b.  From (m—1)(n—1)=2, weobtain n= —2—+1,ie n="F1 Al
m—1 m—1
GiVen that m:k, l: E’ we Obtain tanil( l) +tan71( u) =‘7I Al
n k+1 k k+1 4
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