

Trial Examination 2011

VCE Specialist Mathematics Units 3 & 4

Written Examination 1

Suggested Solutions

a.

Two correct branches crossing the x-axis at $(\pm 1, 0)$.

A1

Asymptotes
$$y = \pm x$$
.

A1

b. Let the volume be V, where
$$V = \pi \int_{1}^{\sqrt{3}} y^2 dx$$
 and $y^2 = x^2 - 1$.

$$=\pi \left[\frac{x^3}{3} - x\right]_1^{\sqrt{3}}$$
 A1

$$=\pi\bigg[(\sqrt{3}-\sqrt{3})-\bigg(\frac{1}{3}-1\bigg)\bigg]$$

$$=\frac{2\pi}{3} \text{ (cubic units)}$$
 A1

Question 2

a.

A1

b. The body is moving, hence $F = \frac{N}{\sqrt{2}}$.

Vertical:
$$N = g - P \sin(60^{\circ})$$
, i.e. $N = g - \frac{\sqrt{3}P}{2}$.

Horizontal:
$$a = P\cos(60^{\circ}) - \frac{N}{\sqrt{2}}$$
, i.e. $a = \frac{P}{2} - \frac{N}{\sqrt{2}}$.

Substituting
$$N = g - \frac{\sqrt{3}P}{2}$$
 into $a = \frac{P}{2} - \frac{N}{\sqrt{2}}$ gives $a = \frac{P}{2} - \frac{1}{\sqrt{2}} \left(g - \frac{\sqrt{3}P}{2} \right)$.

$$a = \frac{P}{2} - \frac{g}{\sqrt{2}} + \frac{\sqrt{3}P}{2\sqrt{2}}$$
 (or equivalent)

So
$$a = \frac{P - \sqrt{2}g}{2} + \frac{\sqrt{6}P}{4}$$
.

Note: $a = \frac{P}{2} - \frac{g}{\sqrt{2}} + \frac{\sqrt{3}P}{2\sqrt{2}}$ (or equivalent) is needed for the final A1.

Question 3

Let $u = \sin(x)$ and so $\frac{du}{dx} = \cos(x)$. When x = 0, u = 0 and when $x = \frac{\pi}{2}$, u = 1.

So
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos(x)}{1 + \sin^{2}(x)} dx = \int_{0}^{1} \frac{1}{1 + u^{2}} du$$

$$= \left[\tan^{-1}(u) \right]_{0}^{1}$$

$$= \tan^{-1}(1) - \tan^{-1}(0)$$

$$= \frac{\pi}{4}$$
A1

Question 4

Using the scalar product, i.e.
$$\cos(\theta) = \frac{(i+j+k)\cdot(5i-j-k)}{\sqrt{3}\sqrt{27}}$$
 and so $\cos(\theta) = \frac{1}{3}$. M1

Using
$$\cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right) - 1$$
, we obtain $2\cos^2\left(\frac{\theta}{2}\right) - 1 = \frac{1}{3}$.

Rearranging
$$2\cos^2\left(\frac{\theta}{2}\right) - 1 = \frac{1}{3}$$
, we obtain $\cos^2\left(\frac{\theta}{2}\right) = \frac{2}{3}$.

As
$$\theta$$
 is an acute angle, we reject $\cos\left(\frac{\theta}{2}\right) = -\sqrt{\frac{2}{3}}$ and so $\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{2}{3}}$.

Using implicit differentiation to differentiate $x^2 + xy = e^y$: M1

$$2x + y + x\frac{dy}{dx} = e^{-y}\frac{dy}{dx} \text{ (or equivalent)}$$
 A1

Let the gradient of the normal be m_N .

At
$$(-1, 0)$$
, $\frac{dy}{dx} = -1$ and so m_N is 1.

So the equation of the normal is y = x + 1.

Question 6

Attempting to use $a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$. M1

$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{3}{x^3} - \frac{1}{x^2}$$

$$\frac{1}{2}v^2 = \int \left(\frac{3}{x^3} - \frac{1}{x^2}\right) dx$$

$$= \frac{-3}{2x^2} + \frac{1}{x} + c \text{ where } c \text{ is an arbitrary constant}$$
A1

So $v^2 = \frac{-3}{x^2} + \frac{2}{x} + k$, where k is an arbitrary constant.

Given that v = 0 at x = 1, we find that 0 = -3 + 2 + k, i.e. k = 1.

Hence,
$$v^2 = \frac{-3}{x^2} + \frac{2}{x} + 1$$
. M1

Writing as a single fraction, we obtain $v^2 = \frac{x^2 + 2x - 3}{x^2}$.

Taking the square root of both sides we obtain $v = \pm \sqrt{\frac{x^2 + 2x - 3}{x^2}}$.

As a > 0 when x = 1, v is initally positive.

Hence,
$$v = \frac{\sqrt{x^2 + 2x - 3}}{x}$$
 for $x \ge 1$.

a.
$$|\mathbf{r}(t)| = \sqrt{\sin^2(2t) + 4\cos^2(t)}$$
 M1

$$= \sqrt{4\sin^2(t)\cos^2(t) + 4\cos^2(t)} \quad \text{(using } \sin(2t) = 2\sin(t)\cos(t)\text{)}$$

$$= \sqrt{4\cos^2(t)(1 + \sin^2(t))}$$

$$= 2\sqrt{(1 - \sin^2(t))(1 + \sin^2(t))} \quad \text{(using } \cos^2(t) = 1 - \sin^2(t)\text{)}$$
A1

Hence
$$|\mathbf{r}(t)| = 2\sqrt{1 - \sin^4(t)}$$
.

Note: Only award the last A1 if the previous line of work is present.

b. The minimum value of
$$\sin^4(t)$$
 is zero, and so $|\mathbf{r}(t)|_{\text{max}} = 2$ A1 $|\mathbf{r}(t)|_{\text{max}}$ occurs at $t = n\pi$, where $n = 0, 1, 2, 3, ...$ A1

Ouestion 8

$$(z^4 - \operatorname{cis}(\theta)) = 0$$
 or $(z^4 - \operatorname{cis}(-\theta)) = 0$ where $2\cos(\theta) = 1$.

$$2\cos(\theta) = 1$$
 and so $\theta = \frac{\pi}{3}$.

$$z^4 = \operatorname{cis}\left(\frac{\pi}{3}\right) \text{ or } z^4 = \operatorname{cis}\left(-\frac{\pi}{3}\right).$$

$$z = \operatorname{cis}\left(\frac{\pi}{12} + \frac{2k\pi}{4}\right) \text{ or } z = \operatorname{cis}\left(-\frac{\pi}{12} + \frac{2k\pi}{4}\right), \text{ where } k \in \mathbb{Z}.$$

Hence,
$$z = \operatorname{cis}\left(\pm\frac{\pi}{12}\right)$$
, $\operatorname{cis}\left(\pm\frac{5\pi}{12}\right)$, $\operatorname{cis}\left(\pm\frac{7\pi}{12}\right)$, $\operatorname{cis}\left(\pm\frac{11\pi}{12}\right)$.

Note: Award A1 for $\operatorname{cis}\left(\pm\frac{\pi}{12}\right)$ and $\operatorname{cis}\left(\pm\frac{5\pi}{12}\right)$, and A1 for $\operatorname{cis}\left(\pm\frac{7\pi}{12}\right)$ and $\operatorname{cis}\left(\pm\frac{11\pi}{12}\right)$.

$$\mathbf{a.} \qquad \frac{\tan\left(\tan^{-1}\left(\frac{1}{m}\right)\right) + \tan\left(\tan^{-1}\left(\frac{1}{n}\right)\right)}{1 - \tan\left(\tan^{-1}\left(\frac{1}{m}\right)\right)\tan\left(\tan^{-1}\left(\frac{1}{n}\right)\right)} = \tan\left(\frac{\pi}{4}\right) \quad (\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)})$$

So
$$\frac{\frac{1}{m} + \frac{1}{n}}{1 - \frac{1}{m} \times \frac{1}{n}} = 1$$
 M1

$$\frac{m+n}{mn-1} = 1$$
 (multiplying numerator and denominator of the LHS by mn) A1

$$mn - m - n - 1 = 0$$

$$m(n-1) - n - 1 = 0$$

$$m(n-1) - n + 1 = 2$$
 (adding 2 to both sides)

$$m(n-1) - 1(n-1) = 2$$

$$(m-1)(n-1) = 2$$

b. From
$$(m-1)(n-1) = 2$$
, we obtain $n = \frac{2}{m-1} + 1$, i.e. $n = \frac{m+1}{m-1}$.

Given that
$$m = k$$
, $\frac{1}{n} = \frac{k-1}{k+1}$, we obtain $\tan^{-1}\left(\frac{1}{k}\right) + \tan^{-1}\left(\frac{k-1}{k+1}\right) = \frac{\pi}{4}$.