

Victorian Certificate of Education 2010

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

STUDENT NUMBER

Figures
Words

Letter

SPECIALIST MATHEMATICS

Written examination 1

Friday 29 October 2010

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of Dook				
Number of questions	Number of questions to be answered	Number of marks		
10	10	40		

Structure of bool

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 11 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer **all** questions in the spaces provided.

Unless otherwise specified an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ m/s}^2$, where g = 9.8.

Question 1

Consider $f(z) = z^3 + 9z^2 + 28z + 20, z \in C$. Given that f(-1) = 0, factorise f(z) over C.

A body of mass 2 kg is initially at rest and is acted on by a resultant force of v - 4 newtons where v is the velocity in m/s. The body moves in a straight line as a result of the force.

a. Show that the acceleration of the body is given by $\frac{dv}{dt} = \frac{v-4}{2}$.

1 mark

b. Solve the differential equation in **part a.** to find *v* as a function of *t*.

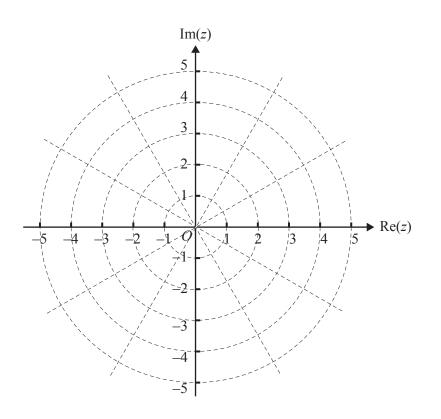
Relative to an origin O, point A has cartesian coordinates (1, 2, 2) and point B has cartesian coordinates (-1, 3, 4).

a. Find an expression for the vector \overrightarrow{AB} in the form $a\underline{i} + b\underline{j} + c\underline{k}$.

1 mark Show that the cosine of the angle between the vectors \overrightarrow{OA} and \overrightarrow{AB} is $\frac{4}{9}$. b. 1 mark Hence find the exact area of the triangle OAB. c.

Given that z = 1 + i, plot and label points for each of the following on the argand diagram below.

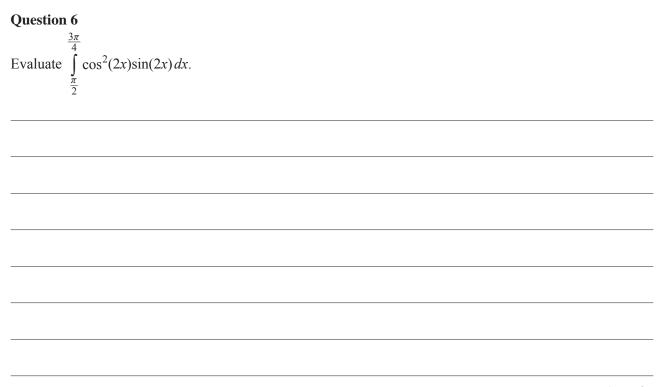
- **i.** *z*
- **ii.** *z*²
- **iii.** *z*⁴



3 marks

Question 5

Given that $f(x) = \arctan(2x)$, find $f''\left(\frac{\pi}{2}\right)$.



Consider the differential equation

$$\frac{d^2 y}{dx^2} = \frac{4x}{(1-x^2)^2}, -1 < x < 1,$$

for which $\frac{dy}{dx} = 3$ when x = 0, and y = 4 when x = 0.

Given that $\frac{d}{dx}\left(\frac{2}{1-x^2}\right) = \frac{4x}{(1-x^2)^2}$, find the solution of this differential equation.

The path of a particle is given by $\underline{r}(t) = t \sin(t) \underline{i} - t \cos(t) \underline{j}$, $t \ge 0$. The particle leaves the origin at t = 0 and then spirals outwards.

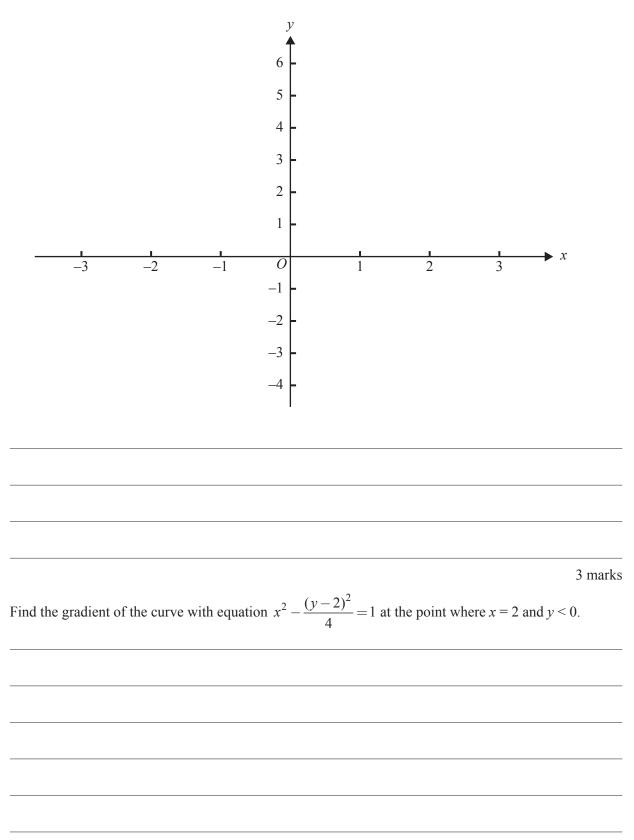
a. Show that the second time the particle crosses the *x*-axis after leaving the origin occurs when $t = \frac{3\pi}{2}$.

1 mark Find the speed of the particle when $t = \frac{3\pi}{2}$. b. 3 marks Let θ be the acute angle at which the path of the particle crosses the *x*-axis. Find $\tan(\theta)$ when $t = \frac{3\pi}{2}$. c.

1 mark

b.

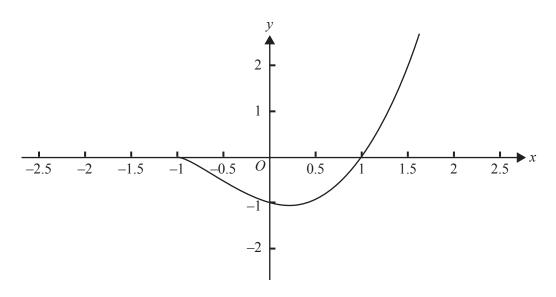
a. On the axes below sketch the graph with equation $x^2 - \frac{(y-2)^2}{4} = 1$. State all intercepts with the coordinate axes and give the equations of any asymptotes.



4 marks

Question 10

Part of the graph with equation $y = (x^2 - 1)\sqrt{x+1}$ is shown below.



Find the area that is bounded by the curve and the *x*-axis. Give your answer in the form $\frac{a\sqrt{b}}{c}$ where *a*, *b* and *c* are integers.

END OF QUESTION AND ANSWER BOOK

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

Specialist Mathematics Formulas

Mensuration

area of a trapezium:	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder:	$2\pi rh$
volume of a cylinder:	$\pi r^2 h$
volume of a cone:	$\frac{1}{3}\pi r^2h$
volume of a pyramid:	$\frac{1}{3}Ah$
volume of a sphere:	$\frac{4}{3}\pi r^3$
area of a triangle:	$\frac{1}{2}bc\sin A$
sine rule:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
cosine rule:	$c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2}$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Circular (trigonometric) functions

$$\cos^{2}(x) + \sin^{2}(x) = 1$$

$$1 + \tan^{2}(x) = \sec^{2}(x)$$

$$\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)$$

$$\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$

$$\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(2x) = \cos^{2}(x) - \sin^{2}(x) = 2 \cos^{2}(x) - 1 = 1 - 2 \sin^{2}(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\,\sin(x)\,\cos(x)$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

 $\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$

 $\cot^2(x) + 1 = \csc^2(x)$

 $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$

 $\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$

function	\sin^{-1}	\cos^{-1}	tan ⁻¹
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, <i>π</i>]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \operatorname{Arg} z \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) \qquad \frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

$$z^n = r^n \operatorname{cis}(n\theta) \text{ (de Moivre's theorem)}$$

Calculus

$$\begin{aligned} \frac{d}{dx}(x^n) &= nx^{n-1} & \int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(e^{ax}) &= ae^{ax} & \int e^{ax} dx = \frac{1}{a}e^{ax} + c \\ \frac{d}{dx}(\log_e(x)) &= \frac{1}{x} & \int \frac{1}{x}dx = \log_e|x| + c \\ \frac{d}{dx}(\sin(ax)) &= a\cos(ax) & \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) & \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\tan(ax)) &= a\sec^2(ax) & \int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c \\ \frac{d}{dx}(\sin^{-1}(x)) &= \frac{1}{\sqrt{1-x^2}} & \int \frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} & \int \frac{a}{a^2 + x^2}dx = \tan^{-1}\left(\frac{x}{a}\right) + c \end{aligned}$$

product rule:

$$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$
quotient rule:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$
chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
Euler's method:
If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

$$\frac{d^2x}{dx} = \frac{dy}{du} \frac{du}{dx} = f(x)$$

acceleration:

$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration: v = u + at $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

TURN OVER

0

Vectors in two and three dimensions

$$\begin{aligned} \mathbf{r} &= x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \\ |\mathbf{r}| &= \sqrt{x^2 + y^2 + z^2} = r \\ \dot{\mathbf{r}} &= \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} \end{aligned}$$

Mechanics

momentum:	$\underset{\sim}{\mathbf{p}} = m \underset{\sim}{\mathbf{v}}$
equation of motion:	$\underset{\sim}{\mathbf{R}} = m\underset{\sim}{\mathbf{a}}$
friction:	$F \leq \mu N$