

2010 Trial Examination

, 	ì
	i
į	- 1
THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY	i
	- 1
I .	!
	ı
1	- 1
į.	- 1
'Company of the Company of the Compa	<i>;</i>

	STUDEN	Γ NUMBE	R				Letter
Figures							
Words							

SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 2

Reading time: 15 minutes Writing time: 2 hours

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
1	22	22	22
2	5	5	58
			Total 80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved graphics calculator or approved CAS calculator and a scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

Question book of 22 pages.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic devices into the examination room.

© TSSM 2010 Page 1 of 22

SECTION 1

Instructions for Section 1

Answer **all** questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks are **not** deducted for incorrect answers.

If more than 1 answer is completed for any question, no mark will be given.

Take the acceleration due to gravity, to have magnitude $g m/s^2$, where g = 9.8

Question 1

The equation $x^2 - 4y^2 - 4mx - 8my = 4$ represents

A. an ellipse with centre at the point (-2m, m) and the semi-axes a = 2m and b = m

B. a hyperbola with centre at the point (2m,-m) and the semi-axes a=2 and b=1

C. an ellipse with centre at the point (-2m, m) and the semi-axes a = 1 and b = 2

D. a hyperbola with centre at the point (2m,-m) and the semi-axes a=4 and b=1

E. a hyperbola with centre at the point (-2m, m) and the semi-axes a = 1 and b = 2

Ouestion 2

If the function $f(x) = Ax^2 - x + B \ln x$, x > 0, $A, B \in R$ has a non-stationary point of inflection for x = 1 and is increasing over its implied domain, then

A.
$$A > \frac{1}{4}, B > \frac{1}{2}$$

B.
$$0 < A < \frac{1}{4}, 0 < B < \frac{1}{2}$$

C.
$$0 < A < \frac{1}{2}, B > \frac{1}{4}$$

D.
$$A > \frac{1}{2}, 0 < B < \frac{1}{4}$$

E.
$$0 < A < \frac{1}{2}, 0 < B < \frac{1}{4}$$

The implied domain of $f(x) = \sqrt{4a^2x^3 - x}$, $a \in \mathbb{R}^+$, is

A.
$$\left(-\frac{1}{2a}, 0\right) \cup \left(\frac{1}{2a}, +\infty\right)$$

B.
$$\left(-\frac{1}{4a^2}, 0\right) \cup \left(\frac{1}{4a^2}, +\infty\right)$$

$$\mathbf{C.} \quad \left[-\frac{1}{2a}, \frac{1}{2a} \right]$$

$$\mathbf{D.} \quad \left[-\frac{1}{2a}, \ 0 \right] \cup \left[\frac{1}{2a}, +\infty \right)$$

E. The domain depends on the sign of a.

Question 4

This graph represents y = f'(x). f'(x) = 0 for x = -3, x = 0, and x = 3.

Which one of the following statements must be true?

- **A.** f(x) is increasing for $x \in (-\infty, -a) \cup (0, a)$
- **B.** f(x) has a local maximum at x = -3.
- **C.** f''(-4) < 0
- **D.** f(x) has a stationary point of inflection at x = 0
- **E.** f''(x) > 0 for $x \in (-a, a)$

SECTION 1 - continued TURN OVER

© TSSM 2010 Page 3 of 22

Question 5

Let $S = \{z : |z| \le 3\} \cap \{z : |z - 3 - 3i| \le 3\}$. Which one of the following is correct?

- **A.** $Arg(z) \ge \frac{\pi}{2}$
- **B.** $3(\sqrt{2}-1) \le |z| \le 3$
- $\mathbf{C.} \quad Arg(z) = \frac{\pi}{4}$
- **D.** $\sqrt{3} 1 \le |z| \le 3$
- **E.** Re(z) Im(z) = 3

Question 6

If |z| - z = 1 + 2i, then

- **A.** $Re(z) + Im(z) = \frac{1}{2}$
- **B.** $|z| = \sqrt{5}$
- **C.** $Arg(z) = \tan^{-1}(2)$
- **D.** $\operatorname{Re}(z) < \operatorname{Im}(z)$
- **E.** $|z| = \frac{5}{2}$

Question 7

If a polynomial with real coefficients has solutions z = 1 - ai and z = 2 over the set of complex numbers, where a is real, then its quadratic factor must be

- **A.** $z^2 + 4$
- **B.** $z^2 2aiz + 1$
- **C.** $z^2 2z + 1 + a^2$
- **D.** $z^2 4$
- **E.** $z^2 + 2z + 1 a^2$

Question 8

Let $\mathbf{a} = 6\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 3\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = -2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$. The value of *n* for which vectors $\mathbf{a} + n\mathbf{b}$ and \mathbf{c} are perpendicular is

- **A.** $-\frac{3}{2}$
- **B.** 4
- C. $\frac{3}{2}$
- **D.** −1
- **E.** 1

SECTION 1 - continued

The diagram shows a regular hexagon ABCDEF. If $\overrightarrow{AB} = \mathbf{u}$ and $\overrightarrow{BC} = \mathbf{v}$, then vector \overrightarrow{AE} can be expressed as

$$\mathbf{B.} \quad 2\mathbf{u} + \mathbf{v}$$

C.
$$-\mathbf{u} + 2\mathbf{v}$$

$$\mathbf{D.} \quad \mathbf{u} + 2\mathbf{v}$$

E.
$$2\mathbf{u} - 2\mathbf{v}$$

Question 10

$$\tan\left(\cos^{-1}\frac{1}{\sqrt{1+a^2}}-\cos^{-1}\frac{a}{\sqrt{1+a^2}}\right), \ a > 0 \text{ is equal to}$$

A.
$$\frac{a^2-1}{2a}$$

C.
$$\frac{1-a^2}{2a}$$

Question 11

The value of p for which the function $y = \ln \frac{1}{1+x}$ satisfies the differential equation

$$x\frac{dy}{dx} + p = e^y \text{ is}$$

$$\mathbf{E.} \quad \frac{1}{e}$$

SECTION 1 – continued TURN OVER

The gradient of the normal to the curve defined parametrically by the equations $x = a \cos t$, $y = b \sin t$, $0 \le t \le 2\pi$, at the point where $t = \frac{3\pi}{4}$ is

- $\mathbf{A.} \quad -\frac{a}{b}$
- **B.** $\frac{a}{b}$
- **C.** *ab*
- $\mathbf{D.} \ -\frac{b}{a}$
- E. $\frac{b}{a}$

Question 13

Using a suitable substitution, $\int_{0}^{3} \frac{2x-1}{\sqrt{x+2}} dx$ is

- $\mathbf{A.} \quad \frac{1}{2} \int_{0}^{3} u \sqrt{\frac{2}{u+5}} du$
- **B.** $\int_{2}^{5} \left(2\sqrt{u} \frac{5}{\sqrt{u}}\right) du$
- C. $\int_{2}^{5} \left(5\sqrt{u} \frac{2}{\sqrt{u}} \right) du$
- $\mathbf{D.} \quad \int_{1}^{5} \left(\frac{u^2 1}{\sqrt{u}} \right) du$
- $\mathbf{E.} \quad \int_{-1}^{5} \left(\frac{u^2}{\sqrt{u-1}} \right) du$

The differential equation with the slope field shown above could be

$$\mathbf{A.} \ \frac{dy}{dx} = x \ln y$$

$$\mathbf{B.} \quad \frac{dy}{dx} = y \ln x$$

$$\mathbf{C.} \ \frac{dy}{dx} = ye^x$$

$$\mathbf{D.} \ \frac{dy}{dx} = \frac{y}{x} e^{\frac{y}{x}}$$

$$\mathbf{E.} \quad \frac{dy}{dx} = \frac{y}{x} \ln \left(\frac{y}{x} \right)$$

Question 15

The area enclosed by the curve $y^2 = -x^4 + 5x^2 - 4$, correct to three decimal places, is

- **A.** 1.162
- **B.** 2.323
- **C.** 0.581
- **D.** 4.646
- **E.** 3.485

SECTION 1 - continued TURN OVER

Ouestion 16

 $\int \frac{\sin^2 x \cos^5 x}{1 + \cos 2x} dx$, after the substitution $\sin x = u$, is the same as

A.
$$\frac{1}{2} \int (u^4 - u^2) du$$

B.
$$-\int (1-u)du$$

C.
$$\frac{1}{2} \int (u^2 - u^4) du$$

D.
$$-\int \frac{1-u^4}{2u^2} du$$

$$\mathbf{E.} \quad \int \left(u^2 - 1\right) du$$

Question 17

A tank contains 50 litres of sugar mixture at a concentration of 10 grams of sugar per litre. Three litres of sugar mixture at a concentration 8 grams per litre flow into the tank each minute and two litres of the resultant mixture flow out each minute. The amount of sugar in the tank, x grams, at any time, t minutes, can be found by solving the differential equation

A.
$$\frac{dx}{dt} = 24 + \frac{2x}{50 - t}, t = 0, x = 50$$

B.
$$\frac{dx}{dt} = 24 - \frac{x}{25}, t = 0, x = 50$$

C.
$$\frac{dx}{dt} = 24 - \frac{2x}{50 + t}, t = 0, x = 500$$

D.
$$\frac{dx}{dt} = 6 + \frac{8x}{50 - t}, t = 0, x = 500$$

E.
$$\frac{dx}{dt} = 6 - \frac{8x}{50 - t}, t = 0, x = 500$$

Question 18

An approximation to the solution of the differential equation $\frac{dy}{dx} + \log_e(x + y) = x$, given that point (1,0) lies on the curve, is found by using Euler's method with h = 0.1. The value of y obtained after two applications of Euler's method is

A.
$$0.21 - 0.1 \log_e 1.2$$

C.
$$1.2 - 0.1 \log_e 1.2$$

E.
$$0.12 - 1.1 \log_e 1.2$$

SECTION 1 - continued

© TSSM 2010

Two cars leave the same point at the same time. The velocity of the first car is given by $v_1 = 3t^2 ms^{-1}$, while the velocity of the second car is given by $v_2 = (6t^2 - 10) ms^{-1}$. The distance between the cars after 10 seconds is

- **A.** 900m
- **B.** 1000m
- **C.** 100m
- **D.** 1100m
- **E.** 800m

Question 20

The sum of the resolved parts of the forces in the direction perpendicular to AB, accurate to the nearest Newton, is

- **A.** 31N
- **B.** 63N
- **C.** 40N
- **D.** 17N
- **E.** 15N

Question 21

A block of mass m kg rests on a rough inclined plane. It is kept stationary by a minimum force F Newtons acting parallel to the plane. If μ is the coefficient of friction between the plane and the block, α is the angle of inclination, R is the normal reaction force and a is the acceleration of the block, which one of the following is correct?

- **A.** $F = mg \sin \alpha + \mu R$
- **B.** $F = mg(\sin \alpha \mu \cos \alpha)$
- C. $F = mg(\sin \alpha + \mu \cos \alpha)$
- **D.** $F = m(a + g \sin \alpha \mu g \cos \alpha)$
- **E.** $R mg + F + \mu R = ma$

SECTION 1 - continued TURN OVER

Question 22

The velocity of a particle moving in a horizontal line is given by

 $v = \sqrt[3]{2 - x^2} ms^{-1}$, $-\sqrt{2} \le x \le 2$. If the position of the particle is x m, then its acceleration is

- **A.** $a = \frac{1}{3v}$
- **B.** $a = -\frac{2x}{3v}$
- $\mathbf{C.} \quad a = \frac{v}{x}$
- $\mathbf{D.} \quad a = -\frac{x}{v}$
- $\mathbf{E.} \quad a = \frac{2x}{3v}$

© TSSM 2010 Page 10 of 22

SECTION 2

Instructions for Section 2

Answer all questions.

A decimal approximation will not be accepted if the question specifically asks for an **exact** answer.

For questions worth more than one mark, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams are **not** drawn to scale.

Take the **acceleration due to gravity**, to have magnitude $g \text{ m/s}^2$, where g = 9.8.

Question 1

Let
$$A = \left\{ z : Arg(1+z) = \frac{\pi}{4} \right\}$$
 and $B = \left\{ z : |1+z| = 2 \right\}$.

a. Sketch the complex regions A and B on the Argand diagram below.

4 marks

SECTION 2 – continued TURN OVER

© TSSM 2010 Page 11 of 22

b.	Write down the Cartesian equations of the regions A and B .	
		2 marks
c.	Show that $z_0 = (\sqrt{2} - 1) + i\sqrt{2}$ is the point of intersection of the regions A and B.	
		2 marks
d.	i. Find $(1+z_0)^6$ in Cartesian form.	
		2 marks

SECTION 2 – continued

© TSSM 2010 Page 12 of 22

ii. Find both values of $\sqrt{1+z_0}$ in polar form.					
	2 1				
	2 marks Total 12 marks				

SECTION 2 – continued TURN OVER

© TSSM 2010 Page 13 of 22

In the diagram below, ABCD is a parallelogram. Points A_1 , B_1 , C_1 and D_1 are the midpoints of BC, CD, DA and AB respectively. Point N is the point of intersection of AA_1 and BB_1 .

Let $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$.

a. Express $\overrightarrow{AA_1}$ and $\overrightarrow{BB_1}$ in terms of **a** and **b**.

2 marks

	\rightarrow	\rightarrow	\rightarrow	\rightarrow			
b.	Use $AN = R$	$n AA_1$ and	d BN =	mBB_1 to	find the	ratio AN	$: NA_1$

	 	

4 marks

SECTION 2 – continued

© TSSM 2010 Page 14 of 22

c. The angle between the vectors \overrightarrow{AB} and \overrightarrow{BC} is 60° and $ \mathbf{a} = \frac{2}{3} \mathbf{b} $.	If $ \mathbf{a} = k$, find
$\overrightarrow{AA_1} \bullet \overrightarrow{BB_1}$ in terms of k .	
	4 marks
	Total 10 marks

SECTION 2 – continued TURN OVER

© TSSM 2010 Page 15 of 22

A monitor showing flight information hangs on a vertical wall inside the airport terminal. Its bottom end is 1.8 metres above the eyes of a traveller, which are at point A, as shown in the diagram. The monitor is 1.4 metres high.

Let α be the angle, in degrees, through which the monitor is seen by the traveller and x the distance, in metres, from the traveller to the wall.

	Show that $\tan \alpha =$	1.4 <i>x</i>		
а.	Show that	tan α –	$x^2 + 5.76$	

·	 	
		4 1

4 marks

SECTION 2 – continued

© TSSM 2010 Page 16 of 22

b.	Let $f(x) = \frac{1.4x}{x^2 + 5.76}$.
	Let $f(x) = \frac{1.4x}{x^2 + 5.76}$. i. Show that $f'(x) = \frac{1.4(5.76 - x^2)}{(x^2 + 5.76)^2}$.
	(x + 5.70)
	ii. Hence, find the maximum value of angle α , in degrees, correct to two decimal places.
	2 + 3 = 5 marks
c.	The traveller moves along the line segment AD , towards the wall, with a speed of 1.2 ms^{-1} . Find the rate of change of angle α , in degrees per second, when the traveller is 4 metres away from the wall. Give your answer correct to one decimal place.
	3 marks

Total 12 marks

SECTION 2 – continued TURN OVER

© TSSM 2010 Page 17 of 22

Ouestion 4

In this question, the arc length formula will be used.

The length of the curve y = f(x) between x = a and x = b is given by the arc length formula.

A flexible chain of length l hangs loosely between two poles of equal height a distance 2d metres apart, so that it sags a distance h metres in the centre.

The curve formed by the chain is called a **catenary**. Using a coordinate system with the lowest point at the origin, the catenary can be described by the equation $y = \frac{e^{mx} + e^{-mx} - 2}{2m}$, where m is a constant.

a. Show that
$$\left(\frac{dy}{dx}\right)^2 = \frac{e^{2mx} + e^{-2mx} - 2}{4}$$
.

2 marks

SECTION 2 – continued

© TSSM 2010 Page 18 of 22

b.	Use the arc length formula to show that the length of the chain is given $e^{md} = e^{-md}$
	by $l = \frac{e^{md} - e^{-md}}{m}$.
	·
	4 marks
c.	In a particular catenary, where $m = \frac{1}{32}$, it is required that the height, h , is 20 metres.
	Find, correct to two decimal places
	i. the distance between the poles.

SECTION 2 – continued TURN OVER

© TSSM 2010 Page 19 of 22

the length of the cable.
1+1= 2 marks
e length of the cable is 100 metres and the distance between the poles is 80 metres, $\frac{1}{2}$ the value of m , correct to two decimal places.
2 mark Total 10 marks

SECTION 2 - continued

© TSSM 2010 Page 20 of 22

Ouestion 5

The position vectors of two particles, A and B, with respect to the origin, are given by $\mathbf{r}_A = (1 + \cos(kt))\mathbf{i} + (2 + 2\sin(kt))\mathbf{j}$ and $\mathbf{r}_B = t\mathbf{i} + (2t^3 - 3t^2)\mathbf{j}$, where $t \ge 0$ is the time in seconds and k is a positive constant. The distance of the particles from the origin is measured in metres.

a. i. Show that the Cartesian equation of the path of particle A is $(x-1)^2 + \frac{(y-2)^2}{4} = 1$.

ii. Find the Cartesian equation of the path of particle *B*.

2+1 = 3 marks

b. On the axes below, sketch the paths of A and B.

2 marks SECTION 2 – continued TURN OVER

2.	Find the maximum speed of particle A in terms of k .
	4 marks
l.	Find, correct to three decimal places, the coordinates of the points where the paths of A and B intersect.
	2 marks
·•	Find the minimum value of k for which the particles will collide, correct to three decimal places.
	3 marks
	Total 14 marks

END OF QUESTION AND ANSWER BOOK

© TSSM 2010 Page 22 of 22