

		`,
<i>!</i>		``
1		!
1		Į.
1		
		ı
i	THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY	1
i		1
i		1
-		i
		i
		,'

2010 Trial Examination

	STUDENT NUMBER			Letter			
Figures							
Words							

SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

	201000000000000000000000000000000000000	
Number of	Number of questions	Number of
questions	to be answered	marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, and rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, a calculator, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages.
- Working space is provided throughout the book.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic devices into the examination room.

© TSSM 2010 Page 1 of 10

This page is blank

© TSSM 2010 Page 2 of 10

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8.

Question 1

a.	Let vectors $\mathbf{a} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$ and $\mathbf{b} = m\mathbf{i} + n\mathbf{j} - 2\mathbf{k}$ be the position vectors of points A and B relative to the origin. Find all possible values of m and n such that vectors \mathbf{a} and \mathbf{b} are				
	perpendicular and $\left \overrightarrow{AB} \right = 2\sqrt{14}$.	~- •			
		4 marks			
b.	The acute angle between the vectors $\mathbf{a} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{AB} = 4\mathbf{i} - 2\mathbf{j} - 6\mathbf{k}$ is				
	$\theta = \cos^{-1}\left(\frac{p}{q\sqrt{7}}\right)$. Determine the values of p and q , where $\frac{p}{q}$ is in simplest form.				
		2 marks			

TURN OVER

© TSSM 2010 Page 3 of 10

Question 2 a. If z = i is a solution of the equation $z^3 - cz^2 + 3iz + 1 - i = 0$, show that c = 2 + 2i. 1 mark b. Find the other two solutions of the equation $z^3 - (2 + 2i)z^2 + 3iz + 1 - i = 0$.

4 marks

© TSSM 2010 Page 4 of 10

Question 3

Draw an accurate graph of $y = \frac{4}{\pi} \sin^{-1}(2x-1) + 3$. State the domain and the range and give the coordinates of the inflection point.

3 marks

Question 4

If $\tan \alpha = \frac{1}{12}$, $\tan \beta = \frac{2}{5}$ and $\tan \gamma = \frac{1}{3}$, where α, β and γ are acute angles, show that $\alpha + \beta + \gamma = \frac{\pi}{4}$.

3 marks

TURN OVER

Question 5

Let $y^2 = xy - \log_e y$.

a.	Find	$\frac{dy}{dx}$	
----	------	-----------------	--

·	

2 marks

b.	Find	$\frac{dx}{dy}$
----	------	-----------------

2 marks

c.	Use the results from part a. and b. to show that	$\frac{dy}{dx} =$	$\frac{1}{dx}$
			dy

1 mark

Question 6

The	region bounded by the curve $y = \frac{x+1}{\sqrt{x^2-1}}$, the lines $y = 0$, $x = 2$ and $x = 4$ is rotated about
	axis. Find the exact value of the volume of this solid of revolution.
_	
_	
_	
_	
_	
_	
-	
_	
_	
-	3 marks

TURN OVER

Qu	estion 7	
a.	Differentiate $x \sin^2 x$ with respect to x.	
	•	
	3 77	1 mark
	Hence, find the exact value of $\int_{0}^{\frac{3\pi}{2}} x \sin(2x) dx$.	
b.	Hence, find the exact value of $\int x \sin(2x) dx$.	
	0	
		4 marks

© TSSM 2010 Page 8 of 10

Question 8

The position of a particle at time t seconds is given by $\mathbf{r}(t) = e^{-2t}\mathbf{i} + (2e^t + 1)\mathbf{j}$, $t \ge 0$.

a. Find the Cartesian equation of the path of the particle. State the domain and the range of the path.

3 marks

b. Sketch the graph of the path. Label the asymptote(s) and end point(s).

2 marks

TURN OVER

© TSSM 2010 Page 9 of 10

Question 9

Three particles of masses 2kg, 4kg and 6kg are placed on a rough horizontal surface and are connected by two inextensible strings. A horizontal pulling force of 24 N is applied to the heaviest particle, as shown in the diagram. The coefficient of friction between the particles and the surface is $\mu = \frac{1}{10}$.

_	ecceleration of the system is $a = 2 - \frac{g}{10}$.	
_		
_		
_		
_		
-		
-		
-	3 ma	
Find the tensions between the particles.		
-		
-		
_		

END OF QUESTION AND ANSWER BOOK

2 marks

© TSSM 2010 Page 10 of 10