

Trial Examination 2010

VCE Specialist Mathematics Units 3 & 4

Written Examination 2

Suggested Solutions

SECTION 1

1	Α	В	С	D	E
2	Α	В	С	D	E
3	Α	В	С	D	E
4	Α	В	С	D	E
5	Α	В	С	D	Е
6	Α	В	С	D	E
7	Α	В	С	D	E
8	Α	В	С	D	E
9	Α	В	С	D	E
10	Α	В	С	D	E
11	Α	В	С	D	E

12	Α	В	С	D	E
13	Α	В	С	D	Е
14	Α	В	С	D	Е
15	Α	В	С	D	E
16	Α	В	С	D	Е
17	Α	В	С	D	E
18	Α	В	С	D	Е
19	Α	В	С	D	Е
20	Α	В	С	D	E
21	Α	В	С	D	Е
22	Α	В	С	D	E

SECTION 1

Question 1 A

Given $f(x) = ax + \frac{b}{x^2}$ where a > 0 and b < 0.

So
$$f'(x) = a - \frac{2b}{x^3}$$

Solving f'(x) = 0 for x gives $x = \left(\frac{2b}{a}\right)^{\frac{1}{3}}$ or equivalent.

So
$$f''(x) = \frac{6b}{x^4}$$

$$f''\left(\left(\frac{2b}{a}\right)^{\frac{1}{3}}\right) = 3\left(\frac{a^4}{2b}\right)^{\frac{1}{3}}$$

$$3\left(\frac{a^4}{2b}\right)^{\frac{1}{3}} < 0 \text{ for } a > 0 \text{ and } b < 0.$$

Therefore f has a local maximum.

The y-axis (x = 0) is a vertical asymptote.

As
$$x \to \pm \infty$$
, $\frac{b}{x^2} \to 0$ and so $f(x) \to ax$.

Thus y = ax is an oblique asymptote.

Question 2 D

For an ellipse, we require 9 - m > 0 and m - 4 > 0.

Hence m < 9 and m > 4, i.e. 4 < m < 9.

2

Question 3 C

$$\sec(3t) = \frac{1}{\cos(3t)}$$

Vertical asymptotes occur for values of t such that cos(3t) = 0 for $0 \le t \le \pi$.

Let $\theta = 3t$.

Solving $\cos(\theta) = 0$ for $0 \le \theta \le 3\pi$ we obtain $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$.

So
$$t = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$
.

Question 4 D

$$g(1) = 1 - 2\tan^{-1}(1) = 1 - \frac{\pi}{2}$$
 and so **A** is true.

The basic graph of $y = \tan^{-1}(x)$ is dilated by a factor of 2 in the y-direction, then reflected in the x-axis and translated 1 unit in the positive y-direction.

The maximal domain of g is the same as that for $y = \tan^{-1}(x)$ i.e. $x \in R$. So **B** is true.

The range of g is $\left(\left(-\frac{\pi}{2}\times2\right)+1,\left(\frac{\pi}{2}\times2\right)+1\right)$ i.e. $(-\pi+1,\pi+1)$. So **C** is true.

$$g'(x) = -\frac{2}{x^2 + 1}$$
 and $g''(x) = \frac{4x}{(x^2 + 1)^2}$

Solving g''(x) = 0 for x gives x = 0.

$$g(0) = 1$$

As $g'(0) = -2 \neq 0$, the point (0, 1) is a non-stationary point of inflection. Hence **D** is not true.

$$g'(x) = -\frac{2}{x^2 + 1}$$
 and so $g'(x) < 0$ for $x \in R$. So option **E** is true.

Ouestion 5 E

The parametric equations are $x = e^t$ (1)

$$y = e^{-2t} \tag{2}$$

From (1), if $t \ge 0$ then $x \ge 1$.

Squaring both sides of (1) we obtain $x^2 = e^{2t}$.

Substituting the above into $y = \frac{1}{e^{2t}}$ we obtain $y = \frac{1}{x^2}$, $x \ge 1$.

Question 6 B

From de Moivre's theorem, if $z = \operatorname{cis}(\theta)$ then $z^n = \operatorname{cis}(n\theta) = \cos(n\theta) + i\sin(n\theta)$.

Similarly,
$$\frac{1}{z^n} = \cos(-n\theta) = \cos(n\theta) - i\sin(n\theta)$$
 since $\cos(-n\theta) = \cos(n\theta)$ and $\sin(-n\theta) = -\sin(n\theta)$.

$$z^{n} - \frac{1}{z^{n}} = (\cos(n\theta) + i\sin(n\theta)) - (\cos(n\theta) - i\sin(n\theta))$$
$$= 2i\sin(n\theta)$$

Question 7 B

As $i^3 = -i$, we have $w = i^3 z$.

Multiplication by i corresponds to a rotation of $\frac{\pi}{2}$ anticlockwise about the origin.

As $i^3 = i \times i \times i$, multiplication by i^3 i.e. -i, corresponds to a rotation of $\frac{3\pi}{2}$ anticlockwise about the origin.

This can be confirmed by noting that $i^3 = -i = \operatorname{cis}\left(\frac{3\pi}{2}\right)$ and thus if $z = \operatorname{cis}(\theta)$, $-iz = \operatorname{cis}\left(\theta + \frac{3\pi}{2}\right)$.

Ouestion 8 C

If z = ai is one root of P(z) = 0 then z = -ai is also a root from the conjugate root theorem.

So P(z) must have $z^2 + a^2$ as a factor.

The only option where $z^2 + a^2$ is a factor is option **C** i.e. $z^3 + a^2z = z(z^2 + a^2)$.

Question 9 A

If $z = r \operatorname{cis}(\theta)$, then $\bar{z} = r \operatorname{cis}(-\theta)$.

Now
$$\frac{1}{\overline{z}} = \frac{1}{r} \operatorname{cis}(\theta)$$
 and so $\left(\frac{1}{\overline{z}}\right)^2 = \frac{1}{r^2} \operatorname{cis}(2\theta)$.

Question 10 A

The differential equation $\frac{dy}{dx} = f(x)$ with y = b when x = a has solution $y = \int_{3}^{x} f(t)dt + b$.

Using the above definition, we obtain $y = \int_{0}^{3} e^{t^3} dt + 2$.

Question 11 D

Let $u = \tan(x)$ and so $\frac{du}{dx} = \sec^2(x)$.

When x = 0, u = 0 and when $x = \frac{\pi}{6}$, $u = \frac{1}{\sqrt{3}}$.

$$\int_{0}^{\frac{\pi}{6}} \tan^{2}(x) \sec^{2}(x) dx = \int_{0}^{\frac{\pi}{6}} u^{2} \frac{du}{dx} dx$$
$$= \int_{0}^{\frac{1}{\sqrt{3}}} u^{2} du$$
$$= -\int_{\frac{1}{\sqrt{3}}}^{0} u^{2} du$$

Question 12 C

From the direction field, it appears that all solutions to the differential equation $\frac{dv}{dt} = f(v)$ have a limiting value of 60 m/s as $t \to \infty$.

Question 13 C

Let v be the vector component of 4i + j + 3k perpendicular to 2i - 2j + k.

$$(2i - 2j + k) + v = 4i + j + 3k$$

$$v = 4i + j + 3k - (2i - 2j + k)$$

$$= 2i + 3j + 2k$$

Question 14 E

$$u + w = (2 + m)i + (2 + n)j + k$$

If u + w is parallel to v then $u + w = \lambda v$ where $\lambda \in R$.

$$(2+m)\mathbf{i} + (2+n)\mathbf{j} + \mathbf{k} = 2\lambda\mathbf{j} + 2\lambda\mathbf{k}$$

By equating the i components, 2 + m = 0 i.e. m = -2.

By equating the k components, $2\lambda = 1$ i.e. $\lambda = \frac{1}{2}$.

By equating the j components, $2 + n = 2 \times \frac{1}{2}$ i.e. n = -1.

So m = -2 and n = -1.

Question 15 B

Option **B** is a necessary and sufficient condition.

 $\overrightarrow{MN} = \overrightarrow{PO}$ i.e. one pair of opposite sides are equal and parallel meaning that MNOP is a parallelogram and $|\overrightarrow{MN}| = |\overrightarrow{MP}|$ means that MNOP has adjacent sides of equal length.

Question 16 E

$$\overrightarrow{DM} = \overrightarrow{DC} + \overrightarrow{CM}$$

$$= i + \frac{1}{2}j$$

$$\overrightarrow{DN} = \overrightarrow{DA} + \overrightarrow{AN}$$

$$= j + \frac{1}{3}i$$

$$= \frac{1}{3}i + j$$

$$\theta = \cos^{-1}\left(\frac{\overrightarrow{DM} \cdot \overrightarrow{DN}}{|\overrightarrow{DM}||\overrightarrow{DN}|}\right)$$

$$= \cos^{-1}\left(\frac{\left(i + \frac{1}{2}j\right) \cdot \left(\frac{1}{3}i + j\right)}{|i + \frac{1}{2}j|\left|\frac{1}{3}i + j\right|}\right)$$

$$= \cos^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{\sqrt{5} \times \frac{\sqrt{10}}{3}}\right)$$

$$= \cos^{-1}\left(\frac{\frac{5}{6}}{\frac{5\sqrt{2}}{6}}\right)$$

$$= \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

$$= \frac{\pi}{2}$$

Question 17 A

$$\sum_{i} F = ma$$

$$N + T + R = 10a$$

$$(-2i - j) + (8i - 3j) + (3i + 16j) = 10a$$

$$9i + 12j = 10a$$

$$a = \frac{1}{10}(9i + 12j)$$

$$|a| = \frac{1}{10}\sqrt{9^2 + 12^2}$$

$$= 1.5$$

Question 18 A

Resolving forces in the vertical direction we have $T\sin(\alpha) + T\sin(\alpha) = mg$.

$$2T\sin(\alpha) = mg$$

So,
$$T = \frac{mg}{2\sin(\alpha)}$$

Question 19 E

Let the distance between A and B be x metres.

So the distance midway between A and B is $\frac{x}{2}$ metres.

The speed of the particle midway between A and B is v_m m/s.

Using $v^2 = u^2 + 2as$ with $v = v_m$ and $s = \frac{x}{2}$ we obtain $v_m^2 = u^2 + ax$.

Using $v^2 = u^2 + 2as$ with $u = v_m$ and $s = \frac{x}{2}$ we obtain $v^2 = v_m^2 + ax$.

Rearranging $v^2 = v_m^2 + ax$ we obtain $v_m^2 = v^2 - ax$.

$$v_m^2 = u^2 + ax {1}$$

$$v_m^2 = v^2 - ax$$
 (2)

(1) + (2) gives:

$$2v_m^2 = u^2 + v^2$$
 and so $v_m = \sqrt{\frac{u^2 + v^2}{2}}$.

So the particle's speed midway between A and B is $\sqrt{\frac{u^2 + v^2}{2}}$ (m/s).

8

Question 20 C

The train's equation of motion in the horizontal direction is $T - kv^2 = ma$.

So
$$a = \frac{T - kv^2}{m}$$
.

We can find k by setting a = 0 when v = V.

$$\frac{1}{m}(T - kv^2) = 0$$

Hence
$$k = \frac{T}{V^2}$$
.

So
$$a = \frac{1}{m} \left(T - \frac{Tv^2}{V} \right)$$
 i.e. $a = \frac{T}{mV^2} (V^2 - v^2)$.

Question 21 B

The initial momentum (p_i) is 2.5×10 i.e. 25 (kg m/s).

The final momentum (p_f) is 2.5×6 i.e. 15 (kg m/s).

Change in momentum
$$(\Delta p) = p_f - p_i$$

$$=-10 \text{ (kg m/s)}$$

Alternatively:

 $\Delta p = m\Delta v$ where Δv is the change in velocity

$$=2.5(6-10)$$

$$=-10 \text{ (kg m/s)}$$

Question 22 D

At t = 0, v = 2 and so option **E** is true.

Calculating the acceleration we obtain $\frac{dv}{dt} = -\frac{2t}{(t^2 + 1)^{\frac{3}{2}}}$.

When t = 0, $\frac{dv}{dt} = 0$ and so **A** is true.

The expression for $\frac{dv}{dt}$ confirms that the acceleration is always negative. Hence **B** is true.

As $\frac{dx}{dt} = \frac{2}{\sqrt{t^2 + 1}}$, then the distance, x metres, travelled by the particle in the first 3 seconds of motion is

given by $x = \int_{0}^{3} \frac{2}{\sqrt{t^2 + 1}} dt$. Hence **C** is true.

Note: $x = \int_0^3 \frac{2}{\sqrt{t^2 + 1}} dt$ gives distance since $\frac{dx}{dt} > 0$ for $t \ge 0$.

Referring to the velocity–time graph, after the initial velocity of 2 m/s, the particle slows down, fairly quickly at first and then more slowly. Hence option **D** is false.

SECTION 2

Question 1

a.

$$\frac{dA}{dt}$$
 = rate of inflow – rate of outflow M1

$$\frac{dA}{dt} = 5 \times 2 - 5 \times \frac{A}{50} = 10 - \frac{A}{10}$$
 A1

b. i.
$$\frac{dA}{dt} = 10 - \frac{A}{10}$$

$$\frac{dA}{dt} = \frac{100 - A}{10}$$

$$\frac{dt}{dA} = \frac{10}{100 - A}$$
M1

$$\int_{0}^{t} dt = 10 \int_{10}^{50} \frac{1}{100 - A} dA \text{ and so } t = 10 \int_{10}^{50} \frac{1}{100 - A} dA$$
 A1

ii.
$$t = 10\log_e\left(\frac{9}{5}\right)$$

c. Let *k* grams be the amount of salt in the tank after 15 minutes.

$$10 \int_{10}^{k} \left(\frac{1}{100 - A} \right) dA = 15$$

Attempting to solve the above equation.

M1

k = 79.9 (grams) or 120.1 (grams)

After a long time, the amount of salt in the tank approaches, but never exceeds, 100 grams because the concentration of the salt solution approaches 2 grams/litre.

Hence k = 79.9 (grams) (correct to the nearest tenth of a gram).

A1

Question 2

a. Method 1:

The maximum height occurs when the vertical component of the velocity is zero.

Solving
$$30\sin(50^\circ) - 9.8t = 0$$
 for t gives $t = 2.345...$ (s).

Substituting
$$t = 2.345...$$
 into $30\sin(50^\circ)t - 4.9t^2$ gives $y = 26.9$ m (correct to the nearest tenth of a metre).

Use alternatively Method 2:

The maximum height occurs when the vertical component of the velocity is zero.

Substituting
$$u = 30 \sin(50^{\circ})$$
, $v = 0$ and $g = -9.8$ into $v^{2} = u^{2} + 2gy$.

Solving
$$(30\sin(50^\circ))^2 + 2(-9.8)y = 0$$
 for y gives $y = 26.9$ (m) (correct to the nearest tenth of a metre).

b. Method 1:

Solving
$$30\sin(50^\circ)t - 4.9t^2 = 2$$
 for t gives $t = 0.0887...$ (s) or $t = 4.601...$ (s).

Rejecting the smaller t-value, we obtain
$$t = 4.6$$
 (s) (correct to one decimal place).

Use alternatively Method 2:

It takes 2.345... seconds for the cricket ball to reach its maximum height. Now we find the remaining time of flight before the cricket ball is caught.

Solving
$$4.9t^2 = 26.946... - 2$$
 for t with $t > 0$ gives $t = 2.256...$ (s).

So
$$2.345... + 2.256... = 4.6$$
 (s) (correct to one decimal place).

c.
$$r'(t) = 30\cos(50^\circ)i + (30\sin(50^\circ) - 9.8t)j$$
 A1

$$|\mathbf{r}'(4.601...)| = \sqrt{(30\cos(50^\circ))^2 + (30\sin(50^\circ) - 9.8 \times 4.601...)^2}$$
 M1

Hence the cricket ball's speed is 29.3 (m/s) (correct to one decimal place).

d. Let θ be the angle between the direction of the cricket ball's motion and the horizontal.

$$\tan(\theta) = \left| \frac{30\sin(50^\circ) - 9.8 \times 4.601...}{30\cos(50^\circ)} \right| = \frac{22.112...}{19.2836...}$$
 M1 A1

Hence $\theta = 48.9^{\circ}$ (correct to the nearest tenth of a degree).

Question 3

a.

An intercept at (0, 1) and y = 0 is a horizontal asymptote.

A1

Correct shape and scale.

A1

b. i.
$$g(x) = \frac{1}{x^2 + 1}$$

$$g'(x) = -\frac{2x}{(x^2 + 1)^2}$$

$$g''(x) = \frac{2(3x^2 - 1)}{(x^2 + 1)^3}$$
 (or equivalent)

ii. Solving
$$\frac{2(3x^2 - 1)}{(x^2 + 1)^3} = 0$$
 for x with $x \ge 0$ gives $x = \frac{\sqrt{3}}{3}$. M1 A1

By calculating
$$g'\left(\frac{\sqrt{3}}{3} \pm a\right)$$
 M1

$$g'\left(\frac{\sqrt{3}}{3}\right) = -\frac{3\sqrt{3}}{8}(-0.6495...)$$

e.g.
$$g'\left(\frac{\sqrt{3}}{3} - 0.05\right) = -0.6456...\left(>g'\left(\frac{\sqrt{3}}{3}\right)\right)$$
 and

$$g'\left(\frac{\sqrt{3}}{3} + 0.05\right) = -0.6460...\left(>g'\left(\frac{\sqrt{3}}{3}\right)\right)$$
 A1

Hence $x = \frac{\sqrt{3}}{3}$ is where the largest negative gradient occurs.

OR calculating
$$g''\left(\frac{\sqrt{3}}{3} \pm a\right)$$
 M1

e.g.
$$g''\left(\frac{\sqrt{3}}{3} - 0.05\right) = -0.1587...(<0)$$
 and

$$g''\left(\frac{\sqrt{3}}{3} + 0.05\right) = 0.1335...(>0)$$

Hence $x = \frac{\sqrt{3}}{3}$ is where the largest negative gradient occurs.

 V_1 is the volume of solid of revolution formed by rotating the graph of g by 360° about the y-axis for $0 \le x \le 1$.

Rearranging
$$y = \frac{1}{x^2 + 1}$$
 to express x^2 in terms of y we obtain $x^2 = \frac{1}{y} - 1$. M1

Hence
$$V_1 = \pi \int_{\frac{1}{2}}^{1} \left(\frac{1}{y} - 1\right) dy$$
.

 V_2 is the volume of solid of revolution formed by rotating the tangent line by 360° about the y-axis for $0 \le x \le 1$.

Rearranging
$$y = -\frac{x}{2} + 1$$
 to express x in terms of y we obtain $x = 2(1 - y)$. M1

Hence
$$V_2 = \pi \int_{\frac{1}{2}}^{1} (2(1-y))^2 dy$$
. A1

ii.
$$V_1 = \pi \left(\log_e(2) - \frac{1}{2} \right)$$
 A1

$$V_2 = \frac{\pi}{6}$$

Given that $V_1 > V_2$, we obtain $\pi \left(\log_e(2) - \frac{1}{2} \right) > \frac{\pi}{6}$.

So
$$\log_e(2) - \frac{1}{2} > \frac{1}{6}$$
 i.e. $\log_e(2) > \frac{2}{3}$.

A1

Question 4

a.

Particle A: normal reaction force N_A ; weight force m_1g ; tension T

Particle B: normal reaction force N_B ; weight force m_2g ; tension T

b. Particle A: $m_1 g \sin(\alpha) - T = m_1 a$ (1)

Particle B: $T - m_2 g \sin\left(\frac{\pi}{2} - \alpha\right) = m_2 a$ or $T - m_2 g \cos(\alpha) = m_2 a$ (2)

c. (From Question 4 b) (1) + (2) gives $a = \frac{m_1 g \sin(\alpha) - m_2 g \cos(\alpha)}{m_1 + m_2}$ M1

Particle A will slide down the inclined plane if, and only if, a > 0.

i.e. $m_1 g \sin(\alpha) - m_2 g \cos(\alpha) > 0$. M1

 $m_1 g \sin(\alpha) > m_2 g \cos(\alpha)$

 $\frac{m_1 g \sin(\alpha)}{g \cos(\alpha)} > \frac{m_2 g \cos(\alpha)}{g \cos(\alpha)} \qquad (g \cos(\alpha) \neq 0)$

 $m_1 \tan(\alpha) > m_2$

 $\tan(\alpha) > \frac{m_2}{m_1}$ and so $\alpha > \tan^{-1}\left(\frac{m_2}{m_1}\right)$ A1

d. i. $\frac{da}{d\alpha} = \frac{g(2\cos^3(\alpha) - \sin^3(\alpha))}{(2\cos(\alpha) + \sin(\alpha))^2}$ (or equivalent e.g. see below)

 $\frac{da}{d\alpha} = \frac{(2 + \tan(\alpha))g\cos(\alpha) - 2\sec^2(\alpha)g\sin(\alpha)}{(2 + \tan(\alpha))^2}$

Solving $\frac{da}{d\alpha} = 0$ for α gives $\alpha = 0.8999...$ M1 A1

So the two base angles are 0.90 radians (51.56°) and 0.67 radians (38.44°) (correct to two decimal places).

ii. Substituting $\alpha = 0.8999...$ into $a = \frac{g \sin(\alpha)}{\tan(\alpha) + 2}$ we obtain a = 2.35 (m/s²) (correct to two decimal places).

Question 5

a.
$$|z+5-i| = \sqrt{2}$$
 where $z = x + yi$

$$|x+5+(y-1)i| = \sqrt{2}$$

$$\sqrt{(x+5)^2 + (y-1)^2} = \sqrt{2}$$
A1

Squaring both sides we obtain $(x + 5)^2 + (y - 1)^2 = 2$. A1

b. Method 1:

 $Arg(z) = \frac{3\pi}{4}$ is the half-line emanating from O, but not including O, which makes an angle of $\frac{3\pi}{4}$ with the positive Re(z) direction.

This half-line has a cartesian equation given by y = -x. A1 $Arg(z + 2i) = \frac{3\pi}{4}$ is the half-line of $Arg(z) = \frac{3\pi}{4}$ translated -2 units in the Im(z) direction.

Hence L has a cartesian equation given by y = -x - 2, x < 0.

Use alternatively Method 2:

Let z = x + yi

So z + 2i = x + (y + 2)i.

$$\tan\left(\frac{3\pi}{4}\right) = \frac{y+2}{x}, \ y > -2 \ \text{and} \ x < 0.$$

As $\tan\left(\frac{3\pi}{4}\right) = -1$, we obtain $\frac{y+2}{x} = -1$, x < 0.

Hence L has a cartesian equation given by y = -x - 2, x < 0.

c. Point *B* has coordinates (-4, 2).

Substituting x = -4 into y = -x - 2, x < 0 gives y = 2 and substituting x = -4 and y = 2 into $(x + 5)^2 + (y - 1)^2$ we obtain $(-4 + 5)^2 + (2 - 1)^2 = 2$.

Hence point B lies on L and also lies on C.

d. Method 1:

$$\frac{d}{dx}((x+5)^2) + \frac{d}{dx}((y-1)^2) = \frac{d}{dx}(2)$$

$$2(x+5) + 2(y-1)\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-(x+5)}{y-1}$$
 A1

M1

At (-4, 2), the gradient of both C and L is -1. So L touches C.

Use alternatively Method 2:

The gradient of the line (radius) joining (-5, 1) and (-4, 2) is $m = \frac{2-1}{-4-(-5)} = 1$. A1 *L* has a gradient of -1.

The product of the two gradients is -1.

Hence the radius is perpendicular to L and therefore is a tangent. So L touches C.

e.

Method 1:

Let the cartesian equation of the movable half-line be y = mx - 2, x < 0.

Let u = x + yi.

Substituting
$$y = mx - 2$$
 into $(x + 5)^2 + (y - 1)^2 = 2$ gives $(m^2 + 1)x^2 + (10 - 6m)x + 34 = 2$.

Solving
$$(m^2 + 1)x^2 + (10 - 6m)x + 34 = 2$$
 for x gives $x = \frac{3m - 5 \pm \sqrt{-23m^2 - 30m - 7}}{m^2 + 1}$. M1

Solving
$$-23m^2 - 30m - 7 = 0$$
 for *m* gives $m = -1$ or $m = -\frac{7}{23}$. Reject $m = -1$.

Solving
$$(x+5)^2 + (y-1)^2 = 2$$
 and $y = -\frac{7}{23}x - 2$ for x and y gives $x = -\frac{92}{17}$ and $y = -\frac{6}{17}$. M1 A1

Hence
$$u = -\frac{92}{17} - \frac{6}{17}i$$
 and so $u + 2i = -\frac{92}{17} + \frac{28}{17}i$.

$$Arg\left(-\frac{92}{17} + \frac{28}{17}i\right) = \pi - \tan^{-1}\left(\frac{7}{23}\right)$$

Use alternatively Method 2:

Let the cartesian equation of the movable half-line be y = mx - 2, x < 0.

Let u = x + yi.

Substituting y = mx - 2 into $(x + 5)^2 + (y - 1)^2 = 2$ gives $(m^2 + 1)x^2 + (10 - 6m)x + 32 = 0$.

$$\Delta = (10 - 6m)^2 - 4 \times 32 \times (m^2 + 1)$$
 M1

Solving
$$(10 - 6m)^2 - 4 \times 32 \times (m^2 + 1) = 0$$
 (or equivalent) for *m* gives $m = -1$ or $m = -\frac{7}{23}$.

Reject m = -1.

Solving
$$(x+5)^2 + (y-1)^2 = 2$$
 and $y = -\frac{7}{23}x - 2$ for x and y gives $x = -\frac{92}{17}$ and $y = -\frac{6}{17}$. M1 A1

Hence
$$u = -\frac{92}{17} - \frac{6}{17}i$$
 and so $u + 2i = -\frac{92}{17} + \frac{28}{17}i$.

$$Arg\left(-\frac{92}{17} + \frac{28}{17}i\right) = \pi - \tan^{-1}\left(\frac{7}{23}\right)$$

Method 3:

Let u = x + yi.

$$Arg(u+2i) = Arg(x+(y+2)i)$$

$$= \pi - \tan^{-1} \left| \frac{y+2}{x} \right| \text{ if } u \text{ lies on } C$$
M1

If *u* lies on *C* then $y = 1 \pm \sqrt{2 - (x + 5)^2}$.

The maximum value of Arg(u + 2i) occurs when the line joining

$$(0,-2)$$
 to $\left(x, 1 - \sqrt{2 - (x+5)^2}\right)$ is a tangent to $y = 1 - \sqrt{2 - (x+5)^2}$.

Using
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
, we obtain $m = \frac{3 - \sqrt{2 - (x + 5)^2}}{x}$.

We need to find the value of x such that $m = \frac{d}{dx}(1 - \sqrt{2 - (x + 5)^2})$.

Solving
$$\frac{3 - \sqrt{2 - (x + 5)^2}}{x} = \frac{d}{dx} (1 - \sqrt{2 - (x + 5)^2})$$
 for x gives $x = -\frac{92}{17}$.

Substituting
$$x = -\frac{92}{17}$$
 into $y = 1 - \sqrt{2 - (x + 5)^2}$, we obtain $y = -\frac{6}{17}$.

Hence
$$u = -\frac{92}{17} - \frac{6}{17}i$$
 and so $u + 2i = -\frac{92}{17} + \frac{28}{17}i$.

$$Arg(u+2i) = Arg\left(-\frac{92}{17} + \frac{28}{17}i\right)$$
$$= \pi - \tan^{-1}\left(\frac{7}{23}\right)$$

Note: Other solution approaches are possible.