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VCE Specialist Mathematics Units 3 & 4 Trial Examination 2 Suggested Solutions

SECTION 1

Question 1 A

Given f(x) = ax+£2 where a >0 and b <0.
X

So f’(x)=a—29

3
X

Wi

Solving f'(x) =0 for x gives x = (gf) or equivalent.

" 6b
Sof (x)=—4
X
1 . 1
()] -3(5)
f[(a J_3 2b
1
a3
3(2—[)) <0 fora>0and b<0.

Therefore f has a local maximum.
The y-axis (x = 0) is a vertical asymptote.

As x > o, -b—2—>0 and so f(x) > ax.
X

Thus y = ax is an oblique asymptote.

Question 2 D
For an ellipse, we require 9—m >0 and m—4>0.

Hence m<9 and m>4,ie. 4<m<9.
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Question 3 C

1

sec(3t) = cos(3D)

Vertical asymptotes occur for values of ¢ such that cos(3¢t) =0 for0<¢r<m.

Let 6 =3¢.

. . T 37w 5
Solving cos(0) =0 for 0 <0 <3z we obtain 6 = 350
Sor=212 R1L

6’26
Question 4 D

g(l)=1-2tan"'(1)=1 ‘% and so A is true.

The basic graph of y = tan_l(x) is dilated by a factor of 2 in the y-direction, then reflected in the x-axis and
translated 1 unit in the positive y-direction.

The maximal domain of g is the same as that for y = tan_l(x) i.e. x € R.So B is true.

The range of g is ((—gx2) +1,(%><2) + 1) ie. (—m+ 1,7 +1).SoCis true.
’ 2 ”n 4
g'(x) =~ and g"(x) = —>—

x +1 (x"+1)

Solving g"(x) =0 for x gives x=0.

g(0)=1

As g'(0) =-2 (= 0), the point (0, 1) is a non-stationary point of inflection. Hence D is not true.

g'(x)=- 22 and so g'(x) <0 for x € R. So option E is true.

x +1
Question 5 E
The parametric equations are x = e (1)

yv=e (2
From (1),if t>0 then x> 1.

Squaring both sides of (1) we obtain =e

Substituting the above into y = LZI we obtain y = —1—2 ,x>1.
X
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Question 6 B

From de Moivre’s theorem, if z = cis(0) then 7" = cis(n6) = cos(n6) + isin(n6).

Similarly, in = cis(-n0) = cos(nf) — isin(nf) since cos(—nfd) = cos(nf) and sin(—nO) = —sin(nb).
<

7 - —171 = (cos(n6) +isin(nb)) — (cos(nh) —isin(nh))
z

= 2isin(nh)

Question 7 B
3. 3
Asi =—i,wehave w=1iz.
Multiplication by i corresponds to a rotation of 5 anticlockwise about the origin.
AsiP=ixixi , multiplication by i ie. —i , corresponds to a rotation of — anticlockwise about the origin.

This can be confirmed by noting that P=—i= cis(3—27—r) and thus if z=cis(0), —iz= Cis(@ + 3—27—1) .

Question 8 C

If z=ai is one root of P(z) =0 then z =—ai is also a root from the conjugate root theorem.
So P(z) must have 2 +ad" as a factor.,

. 2, 2. . . . 3. 2 2, 2
The only option where z” + a” is a factor is option Cie. 2 +a z=2z(z" +a").

Question 9 A

If z=rcis(0), then z = rcis(-0).
1_1. 1.

Now - =-cis(f) andso | - | = —cis(20).
z r Z r

Question 10 A

The differential equation gl = f(x) with y =b when x = a has solution y =J‘ f(t)dt+b.
X 3

3
Using the above definition, we obtain y = I e di+2.

0
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Question 11 D

Let u = tan(x) and so du _ secz(x) .
dx

When x=0, u=0 andwhenx:%,u:

% 2 2 .% 2 du
J' tan"(x)sec (x)dx=| u I dx
0 o
ne
L
= uzdu
o
0
:—J. uzdu
1
NE

Question 12 C

From the direction field, it appears that all solutions to the differential equation f%) =f(v) have a limiting

value of 60 m/s as t — .

Question 13 C

Let v be the vector component of 4i + j + 3k perpendicular to 2i —2j + k.

(2i-2j+k)+v=4i+j+3k

V=4i+]+3k-(2i-2j +K) 4i+j+3k

1<

=2i+3j+2k

2i-2j+k
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Question 14 E

u+w=_2+m)i+(2+n)j+k
If u+ w is parallel to v then u+w =4v where A € R.
2+m)i+(2+n)j+k=21j+24k

By equating the i components, 2+m =0 i.e. m=-2.

By equating the k components, 24 =1 ie. A = % .

By equating the j components, 2 +n =2 x % ie.n=-1.

Som=-2 and n=-1.

Question 15 B

Option B is a necessary and sufficient condition.

—
MN = PO i.e. one pair of opposite sides are equal and parallel meaning that MNOP is a parallelogram

— |
and ‘MN‘ = ‘M P‘ means that MNOP has adjacent sides of equal length.
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Question 16 E

— — =
DM=DC+CM

L
i+3]

— = —
DN=DA + AN

.1
=j+zi

i+]

W=

—

DM - DN
il [pAl

(i+31)-(5i+])

. .
Si+]

— —
6 =cos j

= COS 1+l
13

1.1
3 2
50

3

=cos

|c\|m v

-1
= COS

-1
= COS (

S

)

Sl o

7
4

Question 17 A

Z}j:ma}
N+T+R=10a
(—21—i)+(81—3];)+(3i+16i)=10.31
9i+12j=10a

1. )

a= 10(91+ 121)

|a\:—1— 9%+ 12°
~ 10

=15
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Question 18 A

Resolving forces in the vertical direction we have T'sin(a) + Tsin(a) =mg.
2Tsin(a) =mg

So, T= &
2sin(a)

Question 19 E

Let the distance between A and B be x metres.

So the distance midway between A and B is g metres.

The speed of the particle midway between A and B is v,, m/s.

.2 2 . X : 2_ 2

Using v =u"+2as withv=v,, ands:i we obtain v,," =u" +ax.
.2 2 . X .2 2

Using v:=u"+2as withu=v,, ands:i we obtain v" =v, " +ax.

R : 22 btai 2 2
earranging v- =v, " + ax weobtain v, =v —ax.

2_ 2
v, =u +ax (1)
vmzzvz—ax (2)
(1) + (2) gives:

2 2, 2 P4y
2v, =u"+v andsov, = uzv'

2 2
u +v

So the particle’s speed midway between A and B is (m/s).
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Question 20 C

kv

mg

The train’s equation of motion in the horizontal direction is 7'— kv =ma.

T— kv’
-

So a=

We can find & by setting a =0 when v=V.

1 2
—(T-kv’)=0
—(T—kv")
Hence k:%.
V
2
Soa= l(T—T—V) ie. a= L(Vz—vz).
m 14 mv’
Question 21 B

The initial momentum (p,) is 2.5 x 10 i.e. 25 (kg m/s).
The final momentum (p;) is 2.5 x 6 i.e. 15 (kg m/s).
Change in momentum (Ap) = p;—p;
=-10 (kg m/s)

Alternatively:
Ap = mAv where Av is the change in velocity

=2.5(6-10)

=-10 (kg m/s)
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Question 22 D
At t=0, v=2 and so option E is true.

Calculating the acceleration we obtain % = —% .

(£ + 1)E

When =0, Z—‘; =0 and so A is true.

. d L . .
The expression for ;Jlt} confirms that the acceleration is always negative. Hence B is true.

As@: 2

7 , then the distance, x metres, travelled by the particle in the first 3 seconds of motion is

t2+1
3
2

givenbyx:j
[2
oNE +1

3

dt . Hence C is true.

Note: x :J. 22 dt gives distance since Cg—; >0 for t>0.
r+1
0

VA

(0’2) +1

Y

]

Referring to the velocity—time graph, after the initial velocity of 2 m/s, the particle slows down, fairly
quickly at first and then more slowly. Hence option D is false.
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SECTION 2
Question 1
a 5 litres/min
10 grams/litre
50 litres
A grams
of salt
‘ ‘ 5 litres/min
A .
10 grams/litre
dA _ .
i rate of inflow — rate of outflow M1
dA 5.0 s5xA_j0-A Al
dt 50 10
b i “op-4
dt 10
dA _100-A M1
dt 10
dr_ 10
dA 100-A
' 50 50
1 1
J- dt—IOJ‘ IOO—AdA andsot—IOJ lOO—AdA Al
0 10 10
s 9
ii. t=10log, 5 Al
c. Let k grams be the amount of salt in the tank after 15 minutes.
k
10 ( ! )dA =15
100-A/7"
10
Attempting to solve the above equation. M1

k=179.9 (grams) or 120.1 (grams)

After a long time, the amount of salt in the tank approaches, but never exceeds, 100 grams because
the concentration of the salt solution approaches 2 grams/litre. Al

Hence k =79.9 (grams) (correct to the nearest tenth of a gram). Al

Copyright © 2010 Neap TEVSMUB4EX2_SS_2010.FM 11
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Question 2
a. Method 1:
The maximum height occurs when the vertical component of the velocity is zero.
Solving 30sin(50°) —9.8¢ =0 for ¢ gives t =2.345... (s). M1
Substituting ¢ = 2.345... into 30sin(50°)¢ — 4.9¢ gives y=26.9 m (correct to the nearest
tenth of a metre). Al

Use alternatively Method 2:

The maximum height occurs when the vertical component of the velocity is zero.

Substituting u = 30sin(50°), v=0 and g =-9.8 into v’ =u" +2gy. M1

Solving (30 sin(50°))2 +2(-9.8)y =0 for y gives y =26.9 (m) (correct to the nearest tenth

of a metre). Al
b. Method 1:

Solving 30sin(50°)¢ — 49 =2 fort gives t=0.0887...(s) or t=4.601... (s). M1

Rejecting the smaller #-value, we obtain 7 = 4.6 (s) (correct to one decimal place). Al

Use alternatively Method 2:

It takes 2.345... seconds for the cricket ball to reach its maximum height. Now we find the
remaining time of flight before the cricket ball is caught.

Solving 4.9 =26.946... — 2 for t with > 0 gives t =2.256... (s). M1
S0 2.345... +2.256... =4.6 (s) (correct to one decimal place). Al
c. r'(t) =30cos(50°)i + (30sin(50°) — 9.81)j Al
I0(4.601...)| = J(300s(50°)) + (308in(50°) — 9.8 x 4.601...) M1
Hence the cricket ball’s speed is 29.3 (m/s) (correct to one decimal place). Al
d. Let 6 be the angle between the direction of the cricket ball’s motion and the horizontal.
(19.2836...)i
0
(-22.112...)]
\
tan(@) — 3OSiH(500) —-98x4.601... - 22.112... M1 Al
30cos(50°) 19.2836...
Hence 6 = 48.9° (correct to the nearest tenth of a degree). Al
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Question 3

a.
y
LS
10
N
AN
N\
\
5
™ T —
0 1 > a7
An intercept at (0, 1) and y = 0 is a horizontal asymptote. Al
Correct shape and scale. Al
. 1
b. i. g(x)= >
x +1
, 2
g'(x)= _2—x2
(x"+1)
2
g"(x)= 2(32x——13) (or equivalent) Al
(x"+1)
2
ii.  Solving L‘? =0 for x with x >0 gives x = 3 . M1 Al
(x> +1) 3
By calculating g ’(? + a) M1
g (ﬁ) _ 3B 06405,
3 8
eg. g '(? - 0.05) = —0.6456...(>g’(?3)) and
g ’(? + 0.05) =-0.6460. ..(>g ’(?3)) Al

3

Hence x = 3 is where the largest negative gradient occurs.
OR calculating g ”(? + a) M1

e.g. g"(? - 0.05) =-0.1587...(<0) and

g"(—? +0.05) =0.1335...(>0) Al
Hence x = —“@ is where the largest negative gradient occurs.
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. E T ™ e
C. 1.

(1,05])

V, is the volume of solid of revolution formed by rotating the graph of g by 360° about

the y-axis for 0 <x<1.

Rearranging y = 21 to express x” in terms of y we obtain X = 1. 1. M1
x +1 y

1

Hence V, =7rj (l - 1) dy. Al
Yy
1

V, is the volume of solid of revolution formed by rotating the tangent line by 360° about

the y-axis for 0 <x<1.

Rearranging y = — )—26 + 1 to express x in terms of y we obtain x =2(1—-y). Ml
1
Hence V, = nj (2(1-y))dy. Al
1
2
" 1
ii. Vi :n(loge(2)—§) Al
7
V== Al
76
Given that V| > V,, we obtain n(loge(2) - %) > % .
Solog,(2)~ 151 ic log,(2)> 2 Al
ge 2 6 b ge 3 ‘
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Question 4

a.

Particle A: normal reaction force N, ; weight force m, g ; tension T Al
Particle B: normal reaction force N, ; weight force m,g ; tension T Al
b. Particle A: m,gsin(a)-T=ma ) Al
Particle B: T—m,g sin(%r - ) =mya or T—mygcos(a)=m,a 2 Al

m,gsin(a) —mygcos(a)

C. (From Question 4 b) (1) + (2) gives a = M1

my +m,
Particle A will slide down the inclined plane if, and only if, a > 0.
i.e. mygsin(a)—m,gcos(a)>0. M1
m,gsin(a) > m,gcos(a)

m,gsin(a) mygcos(a)

gcos(a) gcos(a) (gcos(a) #0)

mtan(a) > m,

n, -1( 1y
tan(a)>—and so ¢ >tan | — Al
nmy ny

3 .3
da _ g(2cos (a) —sin (a)z) (or equivalent e.g. see below) Al
da (2cos(a) + sin(a))

da _ (2 + tan(a))gcos(a) — 2secz(a)g sin(@)
da (2 + tan(@))”

Solving Z—a =0 for a gives a =0.8999.... M1 Al
a

So the two base angles are 0.90 radians (51.56°) and 0.67 radians (38.44°) (correct to
two decimal places). Al

ii.  Substituting & = 0.8999... into a = 835N _ e obtain @ =2.35 (m/s’) (correct to
tan(a) + 2

two decimal places). Al
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Question 5
a. lz+5—i| = /2 where z = x + yi
e+ 5+ (=Dl =42 Al
Jx+57+ (-1 =2
Squaring both sides we obtain (x + 5)2 +(y- 1)2 =2. Al
b. Method 1:
Arg(z) = %7—[ is the half-line emanating from O, but not including O, which makes an angle of
% with the positive Re(z) direction.
This half-line has a cartesian equation given by y = —x. Al
Arg(z +2i) = 3711 is the half-line of Arg(z) = 3%1 translated —2 units in the Im(z) direction.
Hence L has a cartesian equation given by y=—x-2,x<0. Al
Use alternatively Method 2:
Let z=x+yi
Soz+2i=x+(y+2)i.
tan(i@):}i%,y>—2 and x<O0. Al
4 X
As tan(3—n) :—l,weobtainy+2:—1, x<0.
4 X
Hence L has a cartesian equation given by y=—x-2,x<0. Al
C. Point B has coordinates (-4, 2).
Substituting x =—4 into y=—x—2,x <0 gives y =2 and substituting x =—4 and y =2 into
(x+5)°+(y—1)" weobtain (-4 +5)°+(2-1)"=2. Al
Hence point B lies on L and also lies on C.
d. Method 1:
d 2 d 2 d
T+ + (- 1)) =2-(2)
M1
2(x+5)+2(y - 1)@-]=O
dx
dy _=(x+5) Al
dx y-1
At (-4, 2), the gradient of both C and L is —1. So L touches C. Al
Use alternatively Method 2:
The gradient of the line (radius) joining (-5, 1) and (-4, 2) is m = ~2=1 =1. Al
. —4-(-5)
L has a gradient of —1.
The product of the two gradients is —1. Al
Hence the radius is perpendicular to L and therefore is a tangent. So L touches C. Al
Copyright © 2010 Neap TEVSMUB4EX2_SS_2010.FM 16
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€. Im(z) A

» Re(z)
K
-2

Method 1:

Let the cartesian equation of the movable half-line be y=mx -2, x<0.
Letu=x+yi.

Substituting y = mx -2 into (x+5)° + (y— 1) =2 gives (m" + 1)x” + (10— 6m)x + 34 =2.

2
Solving (m” + 1)x”> + (10 — 6m)x + 34 = 2 for x gives x = =% J- 23m —0m T, MI
m +1
Solving — 23m”> —30m—7=0 form gives m=—1 or m= —575 .Reject m=-1. Al
Solving (x+5)>+(y—1)>=2 and y =—27—3x—2 for x and y gives x=—?—§ and y =—%. MI Al
Henceu:—%—gi and so u +2i = _9%2 28'. Al
17 17 17
2 )t 1)
Arg( T + 171 tan 3 Al
Use alternatively Method 2:
Let the cartesian equation of the movable half-line be y=mx—-2,x <0.
Letu=x+yi.
Substituting y = mx —2 into (x+5)" + (y—1)" =2 gives (m" + 1)x” + (10— 6m)x+32=0.
A=(10-6m) —4x32x(m" +1) M1
Solving (10 — 6m)2 —4x32x (m2 + 1) =0 (or equivalent) for m gives m=—1 or m = —575 . Al
Reject m=-1.
Solving (x + 5)2 +(y— 1)2 =2 and y :—lx—2 for x and y gives x:—9—2 and y :—g. M1 Al
23 17 17
Henceu——gz-——qz and so u + 2i = 92 28 Al
17 17 17 7"
2B (1)
Arg( T + 7 =7 — tan 3 Al
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Method 3:
Letu=x+yi.
Arg(u +2i)=Arg(x + (y +2)i)

Hy+2
X

If ulieson Cthen y =1+ /2 — (x +5)°.

The maximum value of Arg(u + 2i) occurs when the line joining

(0,-2) to (x, 1 —A/2—(x+5)2)isatangenttoy: 1 —«/2—(x+5)2.

= —tan if u lieson C M1

_ 2
u,weobtainm:3_ 2-(x+3) .
X, — X, X

Using m = Al

We need to find the value of x such that m = C—Z—C(l —A2—(x+ 5)2) .

Solving3 /2 - (x+5 d —N2—-(x+95) )forxglvesx——?—z. M1
X

Substituting x = —?—% into y=1— 42— (x+5)°, we obtain y = ——167 ) Al
H 92 _6. _92, 28,
ence u 7 171 and so u +2i = 17 17 A\
: 92 28
A 20)=A (_ 24,29 )
rg(u +2i) = Arg - + 17
17 .
= —t (__)
7T —tan 3 A

Note: Other solution approaches are possible.
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