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VCE Specialist Mathematics Units 3 & 4 Trial Examination 1 Suggested Solutions

Question 1
Method 1:

Factorising in two groups of two we obtain:

-+ - 2= 2)+1(z-2)

5 M1
So (z + 1)(z-2)=0.
Hence z = %i, ﬁ Al
Method 2:
Let P(z):z3—ﬁzz+z—ﬁ.
Showing that either P(J2)=0 or P(i)=0 or P(-i)=0. M1
Using a suitable method to obtain (22 +1)(z-42)=0.
Hence z = i, f2 Al
Question 2
a. Parametric equations are x(t) = -3 sin(é) and y(¢) = 4005(9 -1.
% in £) and 21 = cos( 1)
3 s1n(2 and 7 cos > Al
Squaring both equations we obtain:
2 2
e sinz(z) and G+ cosz(z)
9 2 16 2
Adding both equations: M1
2 2
L ox sinz(z) + cosz(z)
9 16 2 2
2 t o t o+ 1)
As sin (—)+cos (—):l,weobtainx—+y—:1. Al
2 2 9 16
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b.
YA
51
4 1
y (0, 3)
—5—4{3—2—110 1 3 4 5
(=3,-1)
31
_41
51
Correct shape Al
Correct end points Al
Question 3
Letu=1+x andso du=dx.
When x=-1, u=0.
When x=0,u=1.
0 1
So 15j xA/1+xdx:15J‘ (u—1)u du. M1
-1 0
lra o
= 15J' [uz— u’ |du
0
23,0
= 15{—1,:2——142 Al
5 3
Jo
(239
5 3
=_4 Al
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Question 4
If mu+nv+pw=0 only when m=n=p=0, then u, v and w are linearly independent.
mi+j-k)+n2i+j-2k)+p(i+2j+k)=0 Al

For the above vector equation to be satisfied, the coefficients of i, j and k must all be zero.

m+2n+p=0 (1)

m+n+2p=0 (2)

-m-2n+p=0 (3)

For stating the above three equations Al
() +@3)gives 2p=0ie. p=0.

Substitute p =0 into (1) and (2) to obtain:

m+2n=0 4)

m+n=0 ®))

4)—(5) givesn=0 andso m=0.

Attempting to solve the above system of equations. M1
Som=n=p=0 and thus u, v and w are linearly independent. Al
Question 5

Let A be the area of the shaded region.
z
4
A =j sin(2x) — 2sin’(x) dx Al

0

Using cos(2x)=1- 28in2(x) i.e. —2sin2(x) =cos(2x)— 1 we obtain:

13
A1

Area :j sin(2x) dx+ | cos(2x)—1 dx (or equivalent) M1
0 o
z z 7
1 4l 4 4
- [——cos(Zx)J 4 —sm(2x)} e Al
2 0o L2 0
__1 (f_r) 1 I (ﬂz)_l- _z
=—5c0s| 5 +2cos(0)+2s1n 2 2sm(O) 4+0
=0+ l + l -0- ‘71
2 2 4
—1_Z :
=1- 1 (square units) Al
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Question 6

The forces are in equilibrium i.e. ZF=0.

OM =4 (m) and BM =2 (m) so that sin(BbM) = % and BOM = 30° .

Horizontally: F - Tsin(30°)=0 Al
Vertically: Tcos(30°)-2g=0 Al
Substituting 7 = 28 into F = Tsin(30°) gives F= &g (newtons). Al
cos(30°) 3
Question 7
d (1 2) 2
—| v = -12
FRC 3x X
12 2
SV = (3x" - 12x)dx
%vzzx3—6x2+c Mi

Atx=0,v=4.2 andso c=16.

Hence %v2:x3—6x2+ 16 and so v2:2(x3—6x2+ 16). Al
b. Atx=2,v= 2(23 —6x2%+ 16) = 0 i.e. the particle’s velocity is zero.

At x=2, a=-12 i.e. the particle’s acceleration is —12 m/s”.

Atx=2,v=0and a=-12. Al

Hence the particle moves towards O from x=2. Al
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Question 8

If?:f(x),xoza and yo=b,thenx,,,=x,+h and y,, =y, + hf(x,).
x

Here xy=2, yo=1 and h=0.1.

For x=2.1, using y, = y, + hf(x,), we obtain y, = 1 + 0.1¢~. Al
For x =2.2, using y, =y, + hf(x,), we obtain y, =y, + 0.1,
Soy, =y, +0.1¢7". Al
Question 9
Attempting implicit differentiation i.e. 2—)26 - 2—)2) Z—y =0. M1
p? dx
5 a
So, 4 = ’-’-21“ : Al
dx y s
The equation of the tangent line at the point P(x,, y,) is givenby y—y, = —2-—1(x -Xx;). Al
ay
y X
_;(y—)H) = _;(x_xl)
b a
2 2
vy ) XX (xy)
2T T T Al
b b a a
2 2
()" Q)" _xx ywy
a b’ a b
x) O xx
Given that 12 - )’12 =1, the equation of the tangent line becomes Lz - )%y =1. Al
a b a b
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Question 10

a.
Y A A
7
3
my
s
7
3
my 27 \lf a+ 2?”
37
a 3 a/\\ ,,,,,,,,,,,,
0 X
m, = tan(a + 2?”) Al
Using tan(x +y) = tan(x) + tan(y) we obtain: M1
1 —tan(x)tan(y)
tan(a) + tan(zg)
m2=tan(a+2—” = Al
1- tan(a)tan(z?n)
Astan(ﬁ):_ﬁ,,mz:w_ Al
3 1 + J/3tan(a)
2
b. mym, = tan(a)(tan(a) — ﬁ)’ myms = tan (a)z— 3 , mam, = tan(a)(tan(a) + ﬁ) Al
1+ ﬁtan(a) 1 -3tan" (@) 1—J§tan(a)

_ tan(a)(1 - A3tan(@))(tan(@) — /3) + (tan’() - 3) + tan(a)(1 + J3tan(a))(tan(a) + /3)

1- 3tan2(a)

Ml

_ —ﬁtan3(a) + 4tan2(a)—ﬁtan(a) + tanz(a) -3+ ﬁtan3(a) + 4tan2(a) + J/3tan(a)

1- 3tan2(a)
_9tan’(a) -3 Al
1- 3tan2(a)
_-3(1 - 3tan’(a))
1- 3tan2(a)
=-3 Al
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