

Trial Examination 2010

VCE Specialist Mathematics Units 3 & 4

Written Examination 1

Suggested Solutions

Method 1:

Factorising in two groups of two we obtain:

$$z^{3} - \sqrt{2}z^{2} + z - \sqrt{2} = z^{2}(z - \sqrt{2}) + 1(z - \sqrt{2})$$
So $(z^{2} + 1)(z - \sqrt{2}) = 0$.

Hence
$$z = \pm i$$
, $\sqrt{2}$.

Method 2:

Let
$$P(z) = z^3 - \sqrt{2}z^2 + z - \sqrt{2}$$
.

Showing that either
$$P(\sqrt{2}) = 0$$
 or $P(i) = 0$ or $P(-i) = 0$.

Using a suitable method to obtain $(z^2 + 1)(z - \sqrt{2}) = 0$.

Hence
$$z = \pm i$$
, $\sqrt{2}$.

Question 2

a. Parametric equations are $x(t) = -3\sin\left(\frac{t}{2}\right)$ and $y(t) = 4\cos\left(\frac{t}{2}\right) - 1$.

$$-\frac{x}{3} = \sin\left(\frac{t}{2}\right) \text{ and } \frac{y+1}{4} = \cos\left(\frac{t}{2}\right)$$

Squaring both equations we obtain:

$$\frac{x^2}{9} = \sin^2\left(\frac{t}{2}\right) \text{ and } \frac{(y+1)^2}{16} = \cos^2\left(\frac{t}{2}\right)$$

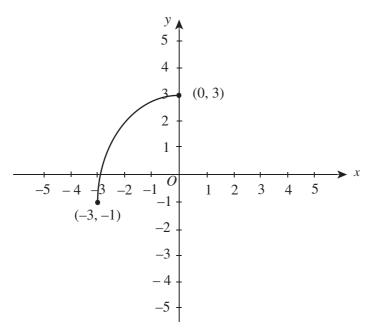
Adding both equations:

$$\frac{x^2}{9} + \frac{(y+1)^2}{16} = \sin^2\left(\frac{t}{2}\right) + \cos^2\left(\frac{t}{2}\right)$$

As
$$\sin^2\left(\frac{t}{2}\right) + \cos^2\left(\frac{t}{2}\right) = 1$$
, we obtain $\frac{x^2}{9} + \frac{(y+1)^2}{16} = 1$.

M1

b.



Correct shape A1

Correct end points A1

Question 3

Let u = 1 + x and so du = dx.

= -4

When x = -1, u = 0.

When x = 0, u = 1.

So
$$15 \int_{-1}^{0} x \sqrt{1+x} \, dx = 15 \int_{0}^{1} (u-1) \sqrt{u} \, du$$
.

$$= 15 \int_{0}^{1} \left(u^{\frac{3}{2}} - u^{\frac{1}{2}} \right) du$$

$$= 15 \left[\frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}} \right]_{0}^{1}$$

$$= 15 \left(\left(\frac{2}{5} - \frac{2}{3} \right) - 0 \right)$$
A1

A1

If $m\mathbf{u} + n\mathbf{v} + p\mathbf{w} = 0$ only when m = n = p = 0, then \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent.

$$m(i + j - k) + n(2i + j - 2k) + p(i + 2j + k) = 0$$
 A1

For the above vector equation to be satisfied, the coefficients of i, j and k must all be zero.

$$m + 2n + p = 0 \qquad (1)$$

$$m + n + 2p = 0 \qquad (2)$$

$$-m-2n+p=0$$
 (3)

For stating the above three equations

A1

$$(1) + (3)$$
 gives $2p = 0$ i.e. $p = 0$.

Substitute p = 0 into (1) and (2) to obtain:

$$m + 2n = 0 \tag{4}$$

$$m + n = 0 \tag{5}$$

$$(4) - (5)$$
 gives $n = 0$ and so $m = 0$.

Attempting to solve the above system of equations.

M1

So
$$m = n = p = 0$$
 and thus u, v and w are linearly independent.

A1

Question 5

Let *A* be the area of the shaded region.

$$A = \int_{0}^{\frac{\pi}{4}} \sin(2x) - 2\sin^{2}(x) \ dx$$
 A1

Using $\cos(2x) = 1 - 2\sin^2(x)$ i.e. $-2\sin^2(x) = \cos(2x) - 1$ we obtain:

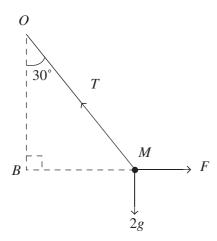
Area =
$$\int_{0}^{\frac{\pi}{4}} \sin(2x) dx + \int_{0}^{\frac{\pi}{4}} \cos(2x) - 1 dx \text{ (or equivalent)}$$
 M1

$$= \left[-\frac{1}{2}\cos(2x) \right]_0^{\frac{\pi}{4}} + \left[\frac{1}{2}\sin(2x) \right]_0^{\frac{\pi}{4}} - \left[x \right]_0^{\frac{\pi}{4}}$$

$$= -\frac{1}{2}\cos\left(\frac{\pi}{2}\right) + \frac{1}{2}\cos(0) + \frac{1}{2}\sin\left(\frac{\pi}{2}\right) - \frac{1}{2}\sin(0) - \frac{\pi}{4} + 0$$
A1

$$= 0 + \frac{1}{2} + \frac{1}{2} - 0 - \frac{\pi}{4}$$

$$= 1 - \frac{\pi}{4}$$
 (square units)



The forces are in equilibrium i.e. $\Sigma F = 0$.

OM = 4 (m) and BM = 2 (m) so that $\sin(B\hat{O}M) = \frac{1}{2}$ and $B\hat{O}M = 30^{\circ}$.

Horizontally:
$$F - T\sin(30^\circ) = 0$$

Vertically:
$$T\cos(30^\circ) - 2g = 0$$
 A1

Substituting
$$T = \frac{2g}{\cos(30^\circ)}$$
 into $F = T\sin(30^\circ)$ gives $F = \frac{2\sqrt{3}g}{3}$ (newtons).

Question 7

$$\mathbf{a.} \qquad \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = 3x^2 - 12x$$

$$\frac{1}{2}v^2 = \int (3x^2 - 12x)dx$$

$$\frac{1}{2}v^2 = x^3 - 6x^2 + c$$
M1

At x = 0, $v = 4\sqrt{2}$ and so c = 16.

Hence
$$\frac{1}{2}v^2 = x^3 - 6x^2 + 16$$
 and so $v^2 = 2(x^3 - 6x^2 + 16)$.

b. At x = 2, $v = 2(2^3 - 6 \times 2^2 + 16) = 0$ i.e. the particle's velocity is zero.

At x = 2, a = -12 i.e. the particle's acceleration is -12 m/s².

At
$$x = 2$$
, $v = 0$ and $a = -12$.

Hence the particle moves towards O from x = 2.

If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$.

Here $x_0 = 2$, $y_0 = 1$ and h = 0.1.

For
$$x = 2.1$$
, using $y_1 = y_0 + hf(x_0)$, we obtain $y_1 = 1 + 0.1e^{-2}$.

For x = 2.2, using $y_2 = y_1 + hf(x_1)$, we obtain $y_2 = y_1 + 0.1e^{-2.1}$.

So
$$y_2 = y_1 + 0.1e^{-2.1}$$
.

Question 9

Attempting implicit differentiation i.e. $\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$. M1

So,
$$\frac{dy}{dx} = \frac{b^2x}{a^2y}$$
.

The equation of the tangent line at the point $P(x_1, y_1)$ is given by $y - y_1 = \frac{b^2 x_1}{a^2 y_1} (x - x_1)$. A1

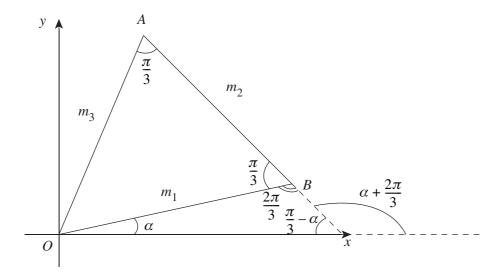
$$\frac{y_1}{b^2}(y - y_1) = \frac{x_1}{a^2}(x - x_1)$$

$$\frac{y_1 y}{b^2} - \frac{(y_1)^2}{b^2} = \frac{x_1 x}{a^2} - \frac{(x_1)^2}{a^2}$$

$$\frac{\left(x_{1}\right)^{2}}{a^{2}} - \frac{\left(y_{1}\right)^{2}}{b^{2}} = \frac{x_{1}x}{a^{2}} - \frac{y_{1}y}{b^{2}}$$

Given that
$$\frac{(x_1)^2}{a^2} - \frac{(y_1)^2}{b^2} = 1$$
, the equation of the tangent line becomes $\frac{x_1x}{a^2} - \frac{y_1y}{b^2} = 1$.

a.



$$m_2 = \tan\left(\alpha + \frac{2\pi}{3}\right)$$

Using
$$tan(x + y) = \frac{tan(x) + tan(y)}{1 - tan(x)tan(y)}$$
 we obtain:

$$m_2 = \tan\left(\alpha + \frac{2\pi}{3}\right) = \frac{\tan(\alpha) + \tan\left(\frac{2\pi}{3}\right)}{1 - \tan(\alpha)\tan\left(\frac{2\pi}{3}\right)}$$
 A1

As
$$\tan\left(\frac{2\pi}{3}\right) = -\sqrt{3}$$
, $m_2 = \frac{\tan(\alpha) - \sqrt{3}}{1 + \sqrt{3}\tan(\alpha)}$.

b.
$$m_1 m_2 = \frac{\tan(\alpha)(\tan(\alpha) - \sqrt{3})}{1 + \sqrt{3}\tan(\alpha)}, m_2 m_3 = \frac{\tan^2(\alpha) - 3}{1 - 3\tan^2(\alpha)}, m_3 m_1 = \frac{\tan(\alpha)(\tan(\alpha) + \sqrt{3})}{1 - \sqrt{3}\tan(\alpha)}$$
 A1

 $m_1m_2 + m_2m_3 + m_3m_1$

$$=\frac{\tan(\alpha)(1-\sqrt{3}\tan(\alpha))(\tan(\alpha)-\sqrt{3})+(\tan^2(\alpha)-3)+\tan(\alpha)(1+\sqrt{3}\tan(\alpha))(\tan(\alpha)+\sqrt{3})}{1-3\tan^2(\alpha)}$$
 M1

 $= \frac{-\sqrt{3}\tan^{3}(\alpha) + 4\tan^{2}(\alpha) - \sqrt{3}\tan(\alpha) + \tan^{2}(\alpha) - 3 + \sqrt{3}\tan^{3}(\alpha) + 4\tan^{2}(\alpha) + \sqrt{3}\tan(\alpha)}{1 - 3\tan^{2}(\alpha)}$

 $1-3\tan^2(\alpha)$

 $=\frac{9\tan^2(\alpha)-3}{1-3\tan^2(\alpha)}$

$$= \frac{-3(1 - 3\tan^2(\alpha))}{1 - 3\tan^2(\alpha)}$$

-3 A1