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SECTION 1 
 
 

ANSWERS 
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6  A  B  C  D  E 
7  A  B  C  D  E 
8  A  B  C  D  E 
9  A  B  C  D  E 
10  A  B  C  D  E 
11  A  B  C  D  E 
12  A  B  C  D  E 
13  A  B  C  D  E 
14  A  B  C  D  E 
15  A  B  C  D  E 
16  A  B  C  D  E 
17  A  B  C  D  E 
18  A  B  C  D  E 
19  A  B  C  D  E 
20  A  B  C  D  E 
21  A  B  C  D  E 
22  A  B  C  D  E 
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SECTION 1 
 
Question 1   Answer  E 
 

( )22 2

2 2x
5 62 3 2 3 6

3 3 9 9
k k iki k i k ki k i i

k i k i k k
+ −+ − − + −

= =
+ − + +

 
 

if the imaginary part is zero,  2 6 0 6k k⇒ − = ⇒ = ±  
 

Question 2   Answer  D 
 

For perpendicular  . 0a b =   

3a mi m j k= − −   and 2b mi m j k= + +  

( )( )2. 6 3 2 0
3 and 2 but 0
3 is the only answer

a b m m m m
m m m
m

= − − = − + =

= = − ≥
=

 

 

 
Question 3   Answer  D 
 

2 2

2 2

2
2 2 2

2
2 2

9 6 9 0
29 9

3

29 9
3 9

9 9
3

x xa by
xax by

xa ax by a

ax by a

+ + + =

⎛ ⎞+ + = −⎜ ⎟
⎝ ⎠
⎛ ⎞

+ + + = −⎜ ⎟
⎝ ⎠

⎛ ⎞+ + = −⎜ ⎟
⎝ ⎠

 

 if 3 and 9a b> > this represents an ellipse. 
 
Question 4   Answer  A 

 
 

a

2  

b  

b a−  

1 

3  

a

2  

b  

b a−  

1 

3  

If . 0 then is perpendicular to
and if . 1 then is a unit vector

If . 2 then 2

It follows that from Pythagoras that 3

a b a b
a a a

b b b

b a

=
=

= =

− =
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Question 5   Answer  B 
 

The domain and range of  ( ) [ ] [ ]1cos are 1,1 and 0,y x π−= −  respectively. 

The domain of  1 34cos 1
2

xy − −⎛ ⎞= +⎜ ⎟
⎝ ⎠

    is  3 31 1 1
2 2

x x− −
≤ ⇒ − ≤ ≤  

[ ]2 3 2 1,5x x− ≤ − ≤ ⇒ ∈   

and the range is  [ ]1, 4 1π + , correct answer is B. 
none of the other alternatives have the correct domain and range. 
 

Question 6   Answer  B 
 
It follows that   

3
2 6 6 42 cis 2 2 cis 2 2 cis 2 2 2 cis
5 5 5 5

z π π π ππ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Now  1 1 1 4 2 4cis cis
4 5 4 52 22 2 cis
5

z
π π

π
⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠

 

 

Question 7   Answer  E 
 

( ) x
3 3 76cis cis 6 cis 12cis
4 4 12

uv r rπ π πθ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

it follows that  6 12r = , so that  2r =  and 
3 7 7 3 4
4 12 12 4 3
π π π π πθ θ+ = − ⇒ = − − = −   but to make π θ π− < ≤  

4 22
3 3
π πθ π= − + =  

 

Question 8   Answer  B 
 

The line y ax=  is an oblique asymptote, with 0a < . 

The graph of 
2

2 0ax b b dy by ax a
x x dx x
+

= = + ⇒ = − =   has solutions of  2 bx
a

=  

Since the graph has turning points, we require bx
a

= ± to have solutions, since 

0,a <  we also require 0.b <  
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Question 9   Answer  D 
 

The volume required is  ( )2 2
2 1

b

y
a

V x x dyπ= −∫   where 1 2andx x  are the inner and outer 

radii respectively. Now 3 and 0b a= = ,  since ( ) ( )3cos 2 cos 2
3
yy x x= − ⇒ − =  

1
1 2

1 cos and
2 3 2

yx x π− ⎛ ⎞= − =⎜ ⎟
⎝ ⎠

, the volume is 

3 3
2 22

1 2 1

0 0

1 cos cos
4 2 3 4 3

y yV dy dyπ ππ π− −
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⌠ ⌠
⎮ ⎮⎮ ⎮
⌡ ⌡

 

 

Question 10   Answer  A 

 

The graph of  2

1y
bx b x

=
− −

  has a denominator of  2bx b x− − , now the discriminant of 

this quadratic is  ( )2 4 4b b b bΔ = − = − , so if  4 or 0,b b> <  then 0Δ > , so the graph 
will have two vertical asymptotes.  
 

Question 11   Answer  C 
 

Resolving horizontally ( ) ( ) ( ) ( )0 00
1 2 31 cos sin 30 sin 30 030F F F− − =  

Resolving vertically     ( ) ( ) ( ) ( )0 00
1 2 32 sin cos 30 cos 30 030F F F+ − =  

( ) ( )( ) ( )0
1 2 3 1 2 3 1 2 3

11 tan 30 so that 3
3

F F F F F F F F F⇒ = + ⇒ = + = +  

( ) ( ) ( )0
1 3 2 1 3 2 1 3 2

32 tan 30 so that 3 3
3

F F F F F F F F F⇒ = − ⇒ = − = −   

3 2 2 3 3 2 1 23 3 2 and 3F F F F F F F F− = + ⇒ = =     
 

Question 12   Answer  C 

 

The symbol is made up from Graphs I , III and V. 

Graph I       
2 2

2 24 16 or 1
16 4
x yx y+ = + = ,  an ellipse, centre at the origin, semi-major 

axes 4, semi-minor axes 2, the outer ellipse.    
 

Graph  III    
2

2 2 24 4 or 1
4
yx y x+ = + = , an ellipse, centre at the origin, semi-minor 

axes 1, semi-major axes 2, parallel to the y-axis, the inner ellipse.    

Graph  V ( ) ( )
2

2 22 9 1 9 or 1 1
9
xx y y+ − = + − = ,  an ellipse, centre at ( )0,1 ,  

semi-major axes 3, semi-minor axes 1, parallel to the y-axis. 
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Question 13   Answer  C 
 

Let  ( )3 cisv d θ= , where ( )Arg vθ =  is the angle between v and the real axis.  

Since u is a rotation of  090  anti-clockwise,  it follows that 2 cis
2

u d πθ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, then,  

( )

2 cis
2 22 cis or 3 2

3 cis 3 2 3

d
u i u iv
v d

πθ
π

θ

⎛ ⎞+⎜ ⎟ ⎛ ⎞⎝ ⎠= = = =⎜ ⎟
⎝ ⎠

 

 

Question 14   Answer  E 
 

Using  21
2

s ut at= + ,  

For boy 1, 2, 2u a= = , 2
1 2x t t= +   

For boy 2, 4, 1u a= =  2
2

14
2

x t t= + ,    since they are equal  1 2x x=  

2 212 4
2

t t t t+ = +     or  ( )21 12 4 0 0 and 4
2 2

t t t t t t− = − = ⇒ = =  

( )4 8 16 16 8 24x = + = + = m 

 

Question 15   Answer  E 
 

1cosdx
dt t

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  

0

1cos
t

x du C
u

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

⌠
⎮
⌡

    now  to find C, 2 when 0x t= = , 

0

0

12 cos 2du C C
u

⎛ ⎞
= + ⇒ =⎜ ⎟

⎝ ⎠

⌠
⎮
⌡

 

1

0 0

1 1cos 2 now when 1 cos 2
t

x du t x du
u u

⎛ ⎞ ⎛ ⎞
= + = = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

 

Question 16   Answer  B 
 

The solution curves, have the form of  hyperbolas, with centre at ( )2, 2− , the equations 

are  ( ) ( )2 22 2x y k+ − − = , where k is a positive constant, differentiating implicitly, 

gives ( ) ( ) 22 2 2 2 0 or
2

dy dy xx y
dx dx y

+
+ − − = =

−
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Question 17   Answer  A 
 

Using Euler’s method, with  ( ) ( )0 0
10 , 1 log 3 1
3 e

dyx y h f x x
dx

= = = = = +  

so that  1 2
1 2and
3 3

x x= =  

( ) ( )1 0 0
11 log 1 1
3 ey y hf x= + = + =  

( ) ( )2 1 1
11 log 2
3 ey y hf x= + = +  

( ) ( ) ( ) ( )3 2 2
1 1 11 log 2 log 3 1 log 6
3 3 3e e ey y hf x= + = + + = +  

 

Question 18   Answer  C 
 
 

 
 
 
 
 
 
 
 
 
 

 

Let T  be the horizontal force applied  now  10 N 2kg 0.25T m μ= = =  

resolving parallel to the plane   ( )1 andR RT F ma F Nμ− = =  

resolving perpendicular to the plane   ( )2 0N mg− =  

and from  ( ) ( ) ( )12 1N mg a T mg
m

μ= = −    

( )x x
1 10 0.25 2 9.8 2.55
2

a = − = ,  0, usingu v u at= = +  

momentum  x x2 2.55 2 10.2mv = =  kg m/s 
 

    mg 

N

RF  T
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Question 19   Answer  C 
 

( )( )
1

14

2
0

log cos 2

1 4
e x

dx
x

−

−

⌠
⎮
⌡

      

let   ( )1

2 2

2 1 1cos 2
21 4 1 4

duu x du dx
dx x x

− −
= = ⇒ − =

− −
 

terminals when  ( )1 11 1cos and when 0 cos 0
4 2 3 2

x u x uπ π− −⎛ ⎞= = = = = =⎜ ⎟
⎝ ⎠

 

the integral becomes     ( ) ( )
3 2

2 3

1 1log log
2 2e eu du u du

π π

π π

− =∫ ∫  

 

Question 20   Answer  E 
 

The number of rabbits not yet infected is  500 N−  and the initial number infected is 10, 

so that ( ) ( )500 0 10dN kN N N
dt

= − = ,  the rate  49 when 10dN N
dt

= =  

( ) 149 10 500 10 4900 ,
100

k k k= − = ⇒ =  the differential equation is 

( ) ( )500
0 10

100
N NdN N

dt
−

= =  
 

 
Question 21   Answer  D 
 

 

Using constant acceleration formulae  9.8 0 150 ? ?a u s t v= − = = − = =  

2 2 x
x

1 1 2 150150 0 9.8 5.533
2 2 9.8

s ut at t t= + ⇒ − = − ⇒ = =  

x0 9.8 5.533 54.22v u at v= + ⇒ = − = −  
The sandbag hits the ground after 5.533 seconds, with a speed of  54.22 m/s. 
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Question 22   Answer  A 

 

 
 
 
 
 

                            2 kg                                        3 kg 
                              
 
 
 
 
 
 
Resolving horizontally around the 3 kg mass,   ( ) 11 3F T N aμ− − =  

Resolving vertically around the 3 kg mass,  ( ) 1 12 3 0 3N g N g− = ⇒ =  
 
Resolving horizontally around the 2 kg mass,   ( ) 23 2T N aμ− =  

Resolving vertically around the 2 kg mass,  ( ) 2 24 2 0 2N g N g− = ⇒ =  

( )1 becomes 3 3F T g aμ− − =  

( )3 becomes 2 2T g aμ− =    adding to eliminate the tension T 
15 5 but 9.8 so that 7 5
7

F g a g F aμ μ− = = = − =  

If  7F >  newtons then 0a > , the boxes move with constant acceleration. 
All other options are false. 
 

 
END OF SECTION 1 SUGGESTED ANSWERS

F 

3g 
2g 

1N  2N  

T       T
2Nμ  

1Nμ  
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SECTION 2 
 

 
Question 1 
 

a. ( )
150

50

1800bt c dt+ =∫         M1 

 ( )

1502

50

2 2

2 2

1800
2

150 50150 50 1800
2 2

150 50 150 50 1800
2 2

10000 100 1800
100 18

bt ct

b bc c

b c

b c
b c

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦

⎛ ⎞ ⎛ ⎞
+ − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

− + − =⎜ ⎟
⎝ ⎠

+ =
+ =

     A1 

 
b. Since the velocity-time graph is a continuous function 

( ) ( ) ( )13250 sin 1 16 and 50 50v v b c
π

−= = = +   so that 

 ( )1 50 16b c+ =         M1 

( )2 100 18b c+ =  from a.  
 

subtracting gives  50 2b =       
 
 

 1 and 14
25

b c= =  

 ( ) ( ) ( )150 cos 0 150 150 6 14 20
20

v a a v b c
a

= = = + = + =

=
  A1 

 

c. max
x x20 60 6020m/s=
1000

v =  

 max 72 km/hrv =         A1 
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d.           G1 

 

t

v

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

 
 
 

e. ( )
50

180

1

150
0

15032 sin 1800 20cos
50 60

ttd dt dt
π

π
− −⎛ ⎞⎛ ⎞= + + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

⌠ ⌠⎮ ⎮⎮ ⌡⌡

   A1 

 
f. 290.704 1800 381.972d = + +  
 2473md =          A1 
 

g. the retardation is  ( )15020 sin for 150 180
60 60

t
a t

ππ −⎛ ⎞
= − < <⎜ ⎟

⎝ ⎠
 

 the maximum value is   21.472m/s
3
π

− = −  

 yes there is cause to be alarmed, the breaking exceeds 1.0 2m/s   A1 
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Question 2   

a. ( ) 2 9.8r t j k= − −     integrating with respect to t    A1 

 ( ) ( )1 12 9.8 but 0 22 6 9.3r t t j t k C r i j k C= − − + = + + =  

 ( ) ( ) ( )22 6 2 9.3 9.8r t i t j t k= + − + −    integrating again with respect to t A1 

 ( ) ( ) ( ) ( )2 2
2 222 6 9.3 4.9 but 0 1r t ti t t j t t k C r k C= + − + − + = =  

 ( ) ( ) ( )2 222 6 1 9.3 4.9r t ti t t j t t k= + − + + −      A1 
 
b. strikes the ground when . 0r k =   or when 21 9.3 4.9 0t t+ − =   solving gives 
 0.1 and 2 but 0 so 2sect t t t= − = ≥ =      A1 
 ( )2 44 8r i j= +         A1  
 the football hits the ground after 2 seconds, 44 m forward and 8 m to the left. 
 
c. at maximum height  . 0r k =   or when 9.3 9.8 0t− =   solving gives 
 0.95sect =          A1 
 ( )0.95 20.88 4.79 5.41r i j k= + +  

the maximum height is 5.41 m above the ground.    A1  
 
d. the speed of the football at time t is given by 

 ( ) ( ) ( )2 2222 6 2 9.3 9.8r t t t= + − + −      A1 
 the maximum value of the speed occurs when 

 
( )( ) ( ) ( )

( ) ( )2 22

4 6 2 19.6 9.3 9.8
0

22 6 2 9.3 9.8

d r t t t
dt t t

− − − −
= =

+ − + −
    A1 

 when  ( )1.03 and 1.03 22.68 3.94 0.80t r i j k= = + −  

 ( ) ( )22 2
min

22.68 3.94 0.80 22.36 m/sr t = + + − =     A1 

 

 this can also be found by graphing  ( ) ( )2 2222 6 2 9.3 9.8y x x= + − + −  

 and finding the minimum value of  ( )1.03, 22.36  
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Question 3 
 

a.i. 2 2 andOA i j OB ui vj= − + = +       A1 

  ii. ( )2 2 2 22 2 8 2 2 andOA OB u v= − + = = = +    A1 

 since  2 2 2 28 or 8OA OB u v u v= ⇒ + = + =    A1 

since  OAB is an equilateral triangle angle AOB is 600 

( ) .cos OA OB
OA OB

θ =  

( )0 1 2 2cos 60 2
2 8

u v v u− +
= = ⇒ − =      A1 

 
 iii. ( ) ( ) 2 21 2 into 2 8v u u v= + + =  

 

( )

( )

22 2

2

2

2 2 4 4 8

2 1 3

1 3

u u u u

u u

u

+ + = + + =

+ + =

+ =

      M1 

1 3 but 0 so 3 1

2 1 3

u u u

v u v

= − ± > = −

= + = +
     A1 

 

iv. ( )2 2 2 1
3 3 3 2

OC OD OA AD OA AB⎛ ⎞= = + = +⎜ ⎟
⎝ ⎠

 

( ) ( )

( ) ( ) ( ) ( )( )( )

2 1 2 1
3 2 3 2
1 1 3 1 1 32 2
3 3

OC OA OB OA OA OB

OC OA OB i ji j

⎛ ⎞ ⎛ ⎞= + − = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + = + − + +− +

  M1  

( ) ( )( )1 3 3 3 3
3

OC i j= − + +       A1 
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b. i. ( ) ( )1 13 3 3 3
3 3

c i= − + +   

( ) ( )( )
( )

2 21 3 3 3 3
9
1 243 6 3 9 9 6 3 3
9 9

c

c

= − + +

= − + + + + =

 

 

 2 6
3

c =          A1 

 
 
  ii. ( )2 2 , 3 1 1 3a i b i= − + = − + +   and  { : }S z z c c= − ≤  

  and ( )5 3{ : Arg }
12 4

T z zπ π
= ≤ ≤ .  

Now  ( ) 3Arg
4

a π
=    so  a T∈       A1 

and  ( ) ( )1 13 3 3 3
3 3

a c i− = − + + −  

( ) ( )1 13 3 3 3
3 3

2 6
3

so

a c i

a c c

a S

− = − + + −

− = =

∈

      A1  

so   a S T∈ ∩  
  

iii. S is the inside of a circle with center c and radius 2 6
3

c = , it passes  

through the points a, b and the origin.   T is the set of points between  

the rays making angles  of 0 575
12
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 and 0 3135
4
π⎛ ⎞

⎜ ⎟
⎝ ⎠

   G2 
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iv. Since OC bisects OB and OA  and 0 060 30BOA COB COA∠ = ⇒ ∠ = ∠ =  

it follows that  ( ) 0 0Arg 75 30c = +  

( ) ( )07Arg or 105
12

c π
=        A1 
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Question 4 
 

a. g is the reflection of the graph of f  in the x-axis.    A1 
 
b. using implicit differentiation  on  2 3 44y x x= −  

2 32 12 4dyy x x
dx

= −                 ( )22 3dyy x x
dx

⇒ = −    M1 

( ) ( )2 2

3
2

2 3 2 3

4

x x x xdy
dx y x x

− −
= =

−

( )2 3
4

x x
x
−

=
−

   since ( )0, 4x ∈   A1 

 

c. for turning points,  0 3dy x
dx

= ⇒ =  

 ( )3 3 3f =    and ( )3 2 3 0f ′′ = − <      A1 

the point  ( )3,3 3 is a maximum turning point.    A1 
 

d. as 4x →  the gradients of both functions, becomes infinite.   A1 
 

e. correct max  ( )3,3 3 min ( )3, 3 3− passes through ( ) ( )0,0 and 4,0  G1 
 

x

y

-3 -2 -1 0 1 2 3 4 5

-6

-4

-2

0

2

4

6
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f. ( ) 2 34sin 16cos sin
2 2 2
t t tr t i j⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 2 34sin 16cos sin
2 2 2
t t tx y⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 ( )3 6 24 64sin 4 4sin
2 2
t tRHS x x ⎛ ⎞⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

    M1 

 

6 2

6 2

256sin 1 sin
2 2

256sin cos
2 2

t t

t t

⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
2

2 3 6 216cos sin 256sin cos
2 2 2 2
t t t tLHS y ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 shown  A1 

 

g. 23 4sin 3
2
tx ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

 3sin
2 2
t⎛ ⎞ = ±⎜ ⎟

⎝ ⎠
taking positive only 

 
2 3
t π

=  

 2
3

t π
=           A1 

 

h. ( )24sin 4sin cos 2sin
2 2 2
t dx t tx x t

dt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
2
3

22sin 3
3t

dx
dt π

π

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

.            Since dy dy dt
dx dt dx

=    M1 

 at the maximum the particle is no longer rising, so 20 at
3

dy y t
dt

π
= = =  

or alternatively at the maximum 0

dy
dy dt

dxdx
dt

= =  , the velocity vector at the 

maximum point is   2 3
3

r iπ⎛ ⎞ =⎜ ⎟
⎝ ⎠

      A1 
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Question 5 
 
 

a. 29.8 9 kg 0.01ma mg R g m R v= − = = =  

 

2

2 2 2

x9 9 9.8 0.01
0.01 88209.8 9.8

9 900 900

a v
v v va

= −

−
= − = − =

     A1  

      
 

b. Use  
28820

900
dv va v
dx

−
= =  

 2

900
8820

vx dv
v

=
−

⌠⎮
⌡

  , where x is the distance fallen    A1 

 
( )
( ) ( )

2450log 8820 but 0 when 0

0 450log 8820 so 450log 8820
e

e e

x v C x v

C C

= − − + = =

= − + =
   A1 

 
( ) ( )2

2

450log 8820 450log 8820

8820450log
8820

e e

e

x v

x
v

= − −

⎛ ⎞= ⎜ ⎟−⎝ ⎠

     A1 

 
c. ? when 150v x= =  

 

2

2

1
3

2

1
2 3

1
3

8820150 450log
8820

8820 1log
8820 3

8820
8820

8820 8820

8820 1

e

e

v

v

e
v

v e

v e

−

−

⎛ ⎞= ⎜ ⎟−⎝ ⎠
⎛ ⎞ =⎜ ⎟−⎝ ⎠

=
−

− =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

       

 50.002 m/sv =         A1 
  this could easily be obtained graphically. 
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d. use  
28820

900
dv va
dt

−
= =  

50.002

2

0

900
8820

T dv
v

=
−

⌠⎮
⌡

        A1 

 
e. 5.69 secT =          A1 
 
f.  

 
  
 
 
 
 
 
 
 
 

 
 in both situations resolving perpendicular to the plane 

 ( ) ( )9 cos 0 9 cosN g N gθ θ− = ⇒ =  
 when the sandbag is on the point of moving down the plane 
 ( ) ( )1 3 9 sin 0g N gμ θ+ − =        A1 
 when the sandbag is on the point of moving up the plane 
 ( ) ( )2 6 9 sin 0g N gμ θ− − =        A1   

adding ( ) ( )1 2+  gives 

 
( )

( )

9 18 sin
1sin
2

g g θ

θ

=

=
        M1 

 030θ =          A1  
 and  subtracting ( ) ( )2 1−  gives  

3 2g Nμ=  
 ( )0x3 2 9 cos 30g gμ=        M1 

 1 3
93 3

μ = =         A1 

 
 

END OF SECTION 2 SUGGESTED ANSWERS 

9g θ

Nμ

Nμ

9g θ
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3g 
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