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Question 1

Sketch the graph of y = 2; — X on the axes below. Give the exact coordinates of any
—X

stationary points and intercepts and the equations of any straight line asymptotes.

y
A

6__

Worked solution

1 . .
y= P X has a vertical asymptote at X = 2 and an oblique asymptote at y = —X.
—X

Stationary points occur where % =0
X
dy__ 1
dx (2-x)
1
0= -1
(2-x)’
(2-x) =1
2-x==l1
x=1,3

Stationary points are at (1, 0) and (3, —4).
X-intercept, X=1,y =0

. 1
y-intercept, X =0,y = 5

Question 1 — continued
TURN OVER
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4 marks

Mark allocation

1 mark for the equations of both straight line asymptotes.
1 mark for the coordinates of both stationary points.

1 mark for correct intercepts.

1 mark for correct shape.
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Question 2

Find all solutions of z° +z+10=0, zeC.
Worked solution

Let P(z)=2° +2+10

Find a factor of P(z)

P(1)=0, P(-1)=0, P(2)=0
P(-2)=(-2) +(-2)+10=0

.. 2+ 2 is a factor

Find the quadratic factor

22 -27+5
z+2>z3+022+z+10

2’ +27°

—22°+2+10
—-27% -4z
52+10
52+10
0

P(z)=(z+2)z* —22+5)
—(z+2)(2* —22+1)+4)
2+ 2(z-1) +4)
= (2+2)(z-1 - (@) )
(

=(z+2)z-1+2i)z-1-2i)

Solving (z+2)(z—-1+2i)(z-1-2i)=0
z=-2, z=1-2i, z=1+2i

3 marks
Mark allocation
e 1l markfor z=-2.
e 1 mark for correct method.
e 1 mark for three correct solutions.
TURN OVER
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Question 3

Find the cube roots of 4i —4+/3 in polar form.

Worked solution

Let z° = —4/3 +4i =rcis(0)

f 4 1
Where r = —4\/5 ' + 42 and tan(0) = —— = ———
( ) © 43 B

r=+16x3+16 Gzn—g
r=8 6="
6

(el

1
2:83cis(§(%+2kn j by De Moivre’s Theorem
k=0 Z=2cis o
18
k=1 Z=2cis 5—7I+2—7I =2cis 17
18 3 18
k=-1 Zz=2cis Sm_2m =2clis _Im
18 3 18
In polar form the cube roots of 4i —4\/5 are: 2cis(—%j, 2cis(?—gj, 2cis(117—8n]

3 marks

Mark allocation

e 1 mark for finding 8cis (%j

e 1 mark for applying De Moivre’s Theorem.
e 1 mark for three correct solutions.
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Question 4

Find the point of intersection of the normals to the curve Xy+y*=5aty=1.

Worked solution
When y=1, x*x1+1*=5
x> =4
X=22
Need to find the gradient of the normals at the points (2, 1) and (-2, 1)
Xy +y =5
Using implicit differentiation to find the gradient of the tangent at these points

2xy+x2ﬂ+2yﬂ:0
dx dx

%(x2 +2y): —2xy

dy _ —2xy
dx x> +2y

At(2,1) ﬂ = ﬂ = _2 = gradient of normal is 3
dx 27 +2x1 3 2
dy —2x-2x1 2

At (-2, 1) == = gradient of normal is — 3
dx (-2) +2x1 3 2

Equation of the normal at (2, 1): y=%x+c = 1=%><2+c,c=—2
3
=—X-2
y 2

Equation of the normal at (-2, 1): y:—éx+c = 1:—%x(—2)+c,c=—2

3
=-2x-2
=7

The normal equations Yy = %X —2and y= —% X — 2 intersect on the y-axis at (0, —2)

5 marks
Mark allocation

1 mark for finding the points (2, 1) and (-2, 1).

1 mark for a correct method used to find derivative.
1 mark for finding the correct derivative.

1 mark for correct normal equations.

1 mark for correct answer (0, —2).

TURN OVER
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Question 5
Given i arctan( 22X ] = Za , X| #1
dx X —1 X~ +b
Find the real numbers a and b.
Worked solution
2 — p—
Let y = arctan(u) where U = 22 X = au = 2(X 1) 22X(2X)
x* -1 dx (XZ _1)

du _-2x*-2
dx  (x*-1f
du 20 +1)
dx (x2 —1)2

Applying the chain rule

dy_dy du

dx du dx

dy 1 -2(C+1)
dx 1+u? (x2 _1)2

dy_ 1 =2 +)
dx ( 2xjf (x* -1f
1+ —
e |
dy _ -2(x*+1)
dx  (x* —1) +(2x)
dy 203+
dx (x4 -2x* +1)+ 4x*
dy  —2(x*+1)
dx  x*+2x> +1
dy _ —2(x* +1)
dx (x2+1)2
dy -2
dx  x>+1

Hencea=-2andb=1
3 marks
Mark allocation

e 1 mark for applying the chain rule correctly.
e 1 mark for simplifying algebra.
e 1 mark for two correct answers.
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Question 6

Find j e*ve™ +1 dx.

Worked solution

Let u=e**+1

du e
dx
du = 2e**dx

[e™ e +1dx

:%je“m (2e2dx)

:%I(eZX)ZM(zezxdx) If u=e®+1, = e*=u-1
:lj(u—l)zﬁdu

1
u 2u+1 u? du

il
j(uz—zuzw ]du

7 5 3
_1 gu2—2><gu2+gu2 +C
2\7 5 3

2

| —

1
2

5 3

;
=lu2 —gu2 +—-Uu?+c
7 5 3
1 72 51 > :
= 7(e2X + 1)2 ——(e2X + 1)2 + g(e2X + 1)2 +C where C is constant
4 marks
Mark allocation
o 1 mark for selecting correct substitution.
e 1 mark for simplifying integral in terms of u.
e 1 mark for integrating correctly.
e 1 mark for correct answer.
Tip
o Use substitution.
TURN OVER
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Question 7

An object in a refrigerator cools according to differential equation ((jj—-[ = —k(T - 3), keR,

where T °C is the temperature of the object t hours after it being placed in the refrigerator.
A drink with an initial temperature of 18°C is placed in the refrigerator for 1 hour, and it cools
to 8°C in that time.

a. Show that T =15¢™ +3 is a solution to this differential equation.
Worked solution
Given T=15¢"+3 ... (1)

ar _ —15ke™
dt

I k(15*) ... @)

From (1) 15 =T -3
Substituting into (2)
dT
—=—k(T -3
o= k(1-3)
kt . : dT
Therefore T =15 +3 is a solution of o —k(T - 3).

Alternative method:
dT

— =—k(T-3
= k(-3)
a1
dT k(T -3)
L S
kIT-3
t=—%loge(T—3)+C, T>3
t=0,T=18, 0:—%loge(l8—3)+c

c :%loge(IS)

t= —%loge(T —3)+%loge(15)

1 T-3
t=——log,| ——
k g‘*( 15 j

e_kt — T _3
15
T=15"+3
2 marks

Mark allocation

e 1 mark for method used.
e 1 mark for showing correct answer.

Question 7 — continued
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b. Find the exact value of k.

Worked solution
Whent=1,T=28

8=15¢"""+3
et =
15
1
k=-log,| —
e}
k =log, (3)

Mark allocation

e 1 mark for correct answer.

c. Find the exact temperature of the drink after 2 hours.

Worked solution

T=15"+3

T =150 13

T =150 43

T =150 13
T=153)"+3

Whent=2 T =153)"+3

Mark allocation

e 1 mark for correct answer.

Copyright © Insight Publications 2009
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Total 2 + 1 + 1 = 4 marks
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Question 8

A mass of M kg is connected to a 20 kg mass by a light string passing over a smooth pulley.

The rough plane is inclined at 30° to the horizontal level and has coefficient of friction u =% .

The tension in the string connecting the two masses is 150 newtons.

20 kg

<

30° .

a.  Show that the M kg mass is accelerating up the inclined plane at 2.3 m/s”.
Worked solution

20 k

(s}

209

Resolving forces around the 20 kg mass. Assume this mass is moving downwards

20g-T =20a T =150 newtons

20x9.8—-150=20a

20a =46

a=23m/s’

Since the acceleration is positive, the 20 kg mass is moving downwards. The masses are
connected so the M kg mass on the inclined plane must be moving upwards with the same

acceleration.
2 marks

Mark allocation

e 1 mark for equation of motion for vertical mass.
e 1 mark for correct answer.

Tip
« Show all forces acting on the diagram.

Question 8 — continued
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b. Determine the exact value of M.

Worked solution
Resolving forces around the M kg mass on the inclined plane.

This is moving upwards with an acceleration of 2.3 m/s*.

T — Mgsin(30°)— Fr = Ma N = Mg cos(30°) = \/iVIg newtons
ISO—m—M=2.3M Fr=uN =l><\/§'\/Ig =\/§Mg newtons
2 10 57 2 10
23M + Mg + \/EMg =150
10 2 10
1M—0(23+Sg +J§g)=150
1500

M = k
23+ (5+3)g s

3 marks
Total 2 + 3 = 5 marks

Mark allocation

e 1 mark for resolving forces correctly.
e 1 mark for correct substitution into the equation of motion.
e 1 mark for correct answer.

Question 9

The position of a particle at time t is given by r=(1-2sin(nt))i +(cos(2nt)+2)
a. Find the Cartesian equation of the path of the particle.

Worked solution
Find y in terms of X:

X=1-2sin(nt) y =cos(2nt)+2

sin(nt)zl_TX cn(D) y=1-2sin’(nt)+2

y=3-2sin’(nt) .....(Q2)
Substitute (1) into (2)

_ 3_2(1—_X)2
y 2

1 2
=——(x-1 3
y 2(>< ) +
2 marks

Mark allocation

e 1 mark for selecting correct substitution.
e 1 mark for simplifying integral in terms of u.
Question 9 — continued

TURN OVER
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b. Sketch a graph of the path of the particle for 0 <t < % indicating its direction of motion.

s
4__
3__
2Ak
lAk
S S s ) IS S T S g
-1+
-2+
_3__
_4Ak
Worked solution
When t=0 Xx=1-2sin(0) y =cos(0) +2
X=1 y=3
1 [
When tZE X:1—251n(5j y =cos(m)+2
X=-1 y=1

At t =0 the particle starts at the point (1, 3). It moves anticlockwise along the parabola

y= —%(X—l)2 + 3 to reach the point (-1, 1) at t =%.

7
4__

o o)
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Mark allocation

e 1 mark for drawing their curve.
e 1 mark for correct answer with direction of motion shown.

Cc. Determine the speed at which the particle is travelling when t = i

Worked solution
Speed = [ £ |
r =(1-2sin(nt))i +(cos(2mt)+2)

I =-2mcos(nt)i—2nsin(2nt) j

HE \/(—Zn cos(n'[))2 +(—2n sin(27tt))2

|| = 2mycos (xt) +sin(2xt)

Whent:l, 1t =2 |cos?| = |+sin?| =
4 4 2

1 2
|f|=2m [— +1°

V2
[¥|=v6n

1 mark

Total 2 + 2 + 1 = 5 marks

Mark allocation

e 1 mark for correct answer.

Tip
« Differentiate to find velocity vector.
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Question 10

A cyclist of mass 72 kg is travelling on a straight track with a velocity of 1 m/s when he

passes O. At that instant he applies a variable force of v* + 3vnewtons, where v m/s is his
velocity t seconds after passing O. Calculate the exact distance of the cyclist from O when his

velocity reaches /3 m/s. Assume air resistance is negligible.

4 marks

Worked solution

F =ma
v +3v="72a
V43
7
Vﬂ:v3+3v
dx 72
dv v’ +3v
dx  72v
dx 72
dv Vi +3
72
x_jvz+3dv

M3V +3
X =Etfm‘l (LJ+C

3 V3
X = 24+/3 tan™ (%) +c

When Xx=0, v=1m/s

0 =24+/3 tan™ (lj +c

NG}
c= —24\/§x%
C=—437

NG

Find X when v = \/gm/s

X =24+/3 tan ™! {%} VNEY:

X =243 tan"' (1) 437
X =243 x%— 437

X= 6\/§ﬂ—4\/§ﬂ

X= 24\/5 tan™ (L) — 4\/§7r
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X:2\/§7r

The cyclist is 2+/37 m from O when his velocity is V3 mys.

Mark allocation

1 mark for finding the acceleration in terms of v.

1 mark for establishing correct integral.

1 mark for finding correct expression for X in terms of v.
1 mark for answer.

Tip
o Write down the equation of motion and find the acceleration in terms of v.

END OF SOLUTIONS BOOK
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