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Question 1 
 

3 2 2 24 2 7x x y y− + =   taking d
dx

 of each term ( implicit differentiation ) 

( ) ( ) ( ) ( )3 2 2 24 2 7d d d dx x y y
dx dx dx dx

− + =         

product rule in the second term        
2 2 23 8 8 4 0dy dyx xy x y y

dx dx
⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

        M1 

( )2 2 23 8 8 4 dyx xy x y y
dx

− = −       

2 2

2

3 8
8 4

dy x xy
dx x y y

−
=

−
         A1 

 
 

Question 2 
 

2

2

3
9 4

b

a

y V y dx
x

π= =
+

∫  

3
2

2

0

9 3let 2 2 terminals 3 and 0 0
9 4 2

duV dx u x x u x u
x dx

π= = = = = = =
+

⌠⎮
⌡

 

3

2

0

9 1
2 9

V du
u

π
=

+
⌠⎮
⌡

         M1 

3
1

0

9 1 tan
2 3 3

uV π −⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
        

( ) ( )1 13 tan 1 tan 0
2

V π − −⎡ ⎤= −⎣ ⎦  

23
8

V π
=           A1  

 

Question 3 
 
 
 
 
 
 
 
 
 
           A1 
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let a be the acceleration of the system, and T the tension in the string. 
resolving horizontally on the table around the 5 kg block. 
( )1 0.2 5T N a− =   
resolving vertically on the table around the 5 kg block.    M1 
( )2 5 0 5N g N g− = ⇒ =    substitute into ( ) x1 gives 0.2 5 5T g a− =    
or  5T g a− =  
resolving vertically downwards around the 6 kg block hanging vertically. 
( )3 6 6g T a− =  adding these last two equations, to eliminate T gives,  5 11g a=  

2x5 5 9.8 49 1m/s ? 0 sec
11 11 11 2
ga s u t= = = = = =     M1 

using  21
2

s ut at= +  

2

x x
1 49 1 490 metres
2 11 2 88

s ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

       A1  

 

Question 4 

a. 2 2 4 0z z i+ − =   
 using the quadratic formulae  with  1 2 4a b i c= = = −   

 ( )22 4 2 16 4 16 12b ac iΔ = − = + = − + =       

  
2

bz
a

− ± Δ
=          M1 

 2 12 2 2 3
2 2

i iz − ± − ±
= =         

 3 and 3z i i= − − −        A1 
 

b. ( ) ( )
2 23 3 1 2z i z= − − = − + − =  

( ) 1 1 5Arg tan
6 63

z π ππ π− ⎛ ⎞
= − + = − + = −⎜ ⎟

⎝ ⎠
  

52cis
6

z π⎛ ⎞= −⎜ ⎟
⎝ ⎠

         A1 

( )( )

( )

6
6 6

6

52cis 2 cis 5
6

64cis

z

z

π π

π

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= −

      M1  

6 64z = −          A1    
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Question 5 
 

a.  Let  ( )
1

1 1 23 3sin sin where 3y u u x
x x

−− −⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
3
2

2 3

1 3 3
21 2

dy du x
du dxu x

− −
= = − =

−
    chain rule   M1  

 

3

3

3
92 1

3 since 9
92

dy dy du
dx du dx

x
x

dy x
dx xx

x

−
= =

−

−
= >

−

 

3
2 9

dy
dx x x

−
=

−
         

so shown  1 3 3sin for 9
2 9

d x
dx x x x

−⎛ ⎞ −⎛ ⎞ = >⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠
    A1 

b. 
18

12

1 .
9

dx
x x −

⌠
⎮
⌡

 

 

 
18

1

12

2 3sin
3 x

−⎡ ⎤⎛ ⎞
− ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
        M1 

 

1 12 1 3sin sin
3 22

2
3 4 3

π π

− −
⎛ ⎞⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

      M1 

 
18
π

=           A1 
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Question 6 
 

a. Using Euler’s method   ( ) ( )log 2 3 2 1 0.5e
dy x y h
dx

= − = =  

          

( ) ( )

( )

( )

( )

( ) ( ) ( ) ( )

0 0

1 0 0

1 1 0

2 1 1

2

12 1 log 2 3
2

1 51 log 1 1
2 2

11 log 2 log log 2 log 2
2

e

e

e e e e

x y h f x x

y y h f x

y x x h

y y h f x

y e e

= = = = −

= +

= + = = + =

= +

= + = + =

   M1  

 2p e=          A1 
 

b. ( ) ( ) ( ) ( ) ( )x
22 3 log 2 3 2 3 2log 2 3

2 3e e
d x x x x
dx x

⎡ ⎤− − = − + −⎣ ⎦ −
 

 ( ) ( ) ( )2 3 log 2 3 2 2log 2 3e e
d x x x
dx

⎡ ⎤− − = + −⎣ ⎦     A1 

Hence  ( )( ) ( ) ( ) ( )2 2log 2 3 2 2 log 2 3 2 3 log 2 3e e ex dx x x dx x x+ − = + − = − −∫ ∫  

( ) ( ) ( )1log 2 3 2 3 log 2 3 2
2e ex dx x x x⎡ ⎤− = − − −⎣ ⎦∫  

( ) ( )log 2 3 log 2 3e e
dy x y x dx
dx

= − = −∫  

( ) ( )1 2 3 log 2 3
2 ey x x x C⎡ ⎤= − − − +⎣ ⎦    to find  C  use  2 when 1x y= =  M1 

( ) ( )11 4 3 log 4 3 2 3
2 e C C⎡ ⎤= − − − + ⇒ =⎣ ⎦  

( ) ( ) ( )1 2 3 log 2 3 3
2 ey x x x x⎡ ⎤= − − − +⎣ ⎦      A1  

( ) ( )33 log 3
2 ey =  

( ) ( )3 log 27 27ey q= =       A1 
 

Question 7 
 

a. ( ) 22 for 0t tr t e i e j t− −= + ≥   vector equation, 

 the parametric equations are  2and 2t tx e y e− −= =  

 now  ( )22 22 2 2t ty e e x− −= = =   
22y x=  is the Cartesian equation of the path, but!    A1 
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b. since 0 0 1 and 0 2t x y≥ ⇒ < ≤ < ≤  , the graph is not the whole parabola 
 it has a hole at the origin.       A1  

x

y

-2 -1 0 1 2

-2

-1

0

1

2

 
 
Question 8 
 

a.  
y 2−  1−  0 1 2 

2
dy y
dx

= −   

slope 
 

1 1
2

 
 

0 1
2

−  
 

1−  
 

 
           A2 



Specialist Mathematics  Trial Examination 1 2008   Solutions                                Page 8  

© KILBAHA PTY LTD 2008 

b. ( )2 0 0 1
2

dy dy yy y
dx dx

+ = ⇒ = − = −   

( )

( ) 2

1 1 log
2

log exp
2 2

e

x

e

dx dy y
y

x xC y y C Ae
−

− = =

⎛ ⎞− + = ⇒ = − + =⎜ ⎟
⎝ ⎠

⌠
⎮
⌡∫

       M1 

0 1 1x y A= = − ⇒ = −     

 2
x

y e
−

= −          A1 
 

c. The graph of  2
x

y e
−

= −  on the above diagram passing through  ( )0, 1−  A1 
 
Question 9 

a. 2

32
16

y
x

=
−

 

 vertical asymptotes at  4x =   and  4x = −   

 horizontal asymptotes at  0y =   ( the x-axis )     A1  

 the turning point is a maximum turning point at ( )0, 2−  also the y-intercept     

correct graph and turning point      A1 
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b. the area is
0

2

2

32
16

dx
x

−
−

⌠⎮
⌡

 but this is below the x-axis and negative, so the area is 

0

2

2

32
16

A dx
x

−

=
−

⌠⎮
⌡

        A1 

 by partial fractions  2

32
16 4 4

B C
x x x

= +
− + −

 adding the partial fractions  

 ( ) ( )
( ) ( )

( )
2

4 4 4 4
4 4 16

B x C x x C B B C
x x x

− + + − + +
= =

+ − −
    M1 

( ) ( ) ( )1 4 32    and  2 0  so that 4B C C B B C+ = − = = =  
00

2

2 2

32 1 14
16 4 4

A dx dx
x x x

− −

⎛ ⎞= = +⎜ ⎟− + −⎝ ⎠
⌠⌠⎮ ⎮⌡ ⌡

      

( ) ( )
0

0

2
2

44 log 4 log 4 4 log
4e e e

xA x x
x−

−

⎡ + ⎤⎛ ⎞= + − − =⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠⎣ ⎦
   M1 

( ) ( )14 log 1 log 4log 3
3e e eA ⎡ ⎤⎛ ⎞= − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    

 ( )log 81 81eA a= =       A1 
 
Question 10 
 

( ) ( ) 1cos sin
3

x x− =   squaring both sides gives 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 1cos 2sin cos sin
9

1 82sin cos sin 2 1
9 9

x x x x

x x x

− + =

= = − =
                                                                    M2 

 

since 0 2
2

x π
< <  in the first quadrant 

( ) 17cot 2
8

x =          A1 
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