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This book presents: 
 

• worked solutions, giving you a series of points to show you how to work 
through the questions. 

• mark allocations 
• tips on how to approach the questions. 
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Question 1 

Let iu 510 −=  and iv −= 2 . 

Find 
v
ui  in Cartesian form. 

 
Worked solution 

( )
i

ii
v
ui

+
−

=
2

510  

     ( )
( )

( )
( )i

i
i

i
−
−

×
+
+

=
2
2

2
510        1A 

     
14

5101020
+

−++
=

ii  

     
5

2015 +
=

i  

     43 += i          1A 

2 marks 
Mark allocation 

• 1 mark for multiplying by the complex conjugate. 
• 1 mark for correct answer. 
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Question 2 

The position of particles A and B at any time t seconds, 0≥t , is given by 
( ) ( ) ( )

~~
2

~ 262 jtitttr
A

−+−=   and   ( ) ( ) ( )
~

2
~~ 6125 jtittr

B
++−= , respectively. 

Determine the time when the particles collide. 

 
Worked solution 
Particles A and B will collide when they are in the same position at the same time. 

( ) ( ) ( )
~~

2
~ 262 jtitttr

A
−+−=  

( ) ( ) ( )
~

2
~~ 6125 jtittr

B
++−=  

Equating ~i  components: 

        12522 −=− ttt  

 01272 =+− tt  

( )( ) 043 =−− tt  

t = 3 and t = 4         1A 
 

Equating 
~
j components: 

         626 2 +=− tt  

   0862 =+− tt  

( )( ) 042 =−− tt  

t = 2 and t = 4         1A 

The ~i  and 
~
j  components of the position vectors are equal when t = 4. 

( ) ( ) ( )
~~~~

2
~ 228246424 jijitr

A
+=−×+×−=  

( ) ( ) ( )
~~~

2
~~ 228641245 jijitr

B
+=++−×=  

The particles collide when t = 4 seconds.     1A 

 
3 marks 

Mark allocation  

• 1 mark for equating ~i  components and finding the associated t values. 

• 1 mark for equating 
~
j  components and finding the associated t values. 

• 1 mark for recognising that the particles collide when t = 4. 
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Question 3 – continued 
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Question 3 
MN is the diameter of circle centre O. 

P is a point on the circumference of this circle. 

Let 
~
pOP =

→

 and ~mOM =
→

. 

Use vectors to prove that ∠MPN is a right angle. 

 

 

 

 

 

 

 

Worked solution 

~mOM =
→

, therefore ~mNO =
→

 (since O is the midpoint of diameter MN). 

~
pOP =

→

 (given) 

Finding vector expressions for 
→

MP  and 
→

NP : 
→→→

+= OPMOMP   
→→→

+= OPNONP  

~~ pmMP +−=
→

   
~~ pmNP +=

→

     1A 

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +−=

→→

~~~~ .. pmpmNPMP  

~~~~~~~~ ..... ppmppmmmNPMP ++−−=
→→

 

~~~~
... mmppNPMP −=

→→

 

2

~

2

~
. mpNPMP −=

→→

       1A 

Since OP and OM are radii of the circle ~~
mp = , 

0. =
→→

NPMP          1A 

Hence, 
→

MP and 
→

NP are perpendicular. 

∴  ∠MPN is a right angle. 

3 marks 

O 

M 

N 
P 
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Question 4 – continued 
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Mark allocation  

• 1 mark for finding vector expressions for 
→

MP  and 
→

NP . 
• 1 mark for finding a simplified expression for the dot product. 

• 1 mark for showing dot product is zero and deducing 
→

MP and 
→

NP are 
perpendicular. 

 
Question 4 

a. Show that ( ) ( ) ( )xxx 2cot2coseccot =−  

 
Worked solution 

( ) ( )xx 2coseccotLHS −=  

  ( )
( ) ( )xx
x

2sin
1

sin
cos

−=  

  ( ) ( ) ( )
( ) ( )xx

xxx
2sinsin

sincos2sin −
=       1M 

  ( ) ( ) ( ) ( )
( ) ( )xx

xxxx
2sinsin

sincoscossin2 −
=  

  ( )
( )x

x
2sin

1cos2 2 −
=  

  ( )
( )x

x
2sin
2cos

=         1A 

  ( )x2cot=  

  RHS=  

2 marks 
Mark allocation  

• 1 mark for simplifying the left hand side of the identity. 
• 1 mark for further simplification leading directly to the right hand side of identity. 
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b. Hence, solve the equation ( ) ( ) 32coseccot =− xx , x ∈ [–π, π]. 

Worked solution 

( ) ( ) 32coseccot =− xx  

                 ( ) 32cot =x  

                 ( )
3

12tan =x   

π2
6

x =  (tan is positive in the first and third quadrants)   1A 

π π π π2 2π , π , , π
6 6 6 6

x = − + − + +  

11π 5π π 7π2 , , ,
6 6 6 6

x = − −  

  11π 5π π 7π, , ,
12 12 12 12

x = − −       1A 

2 marks 

Total 2 + 2 = 4 marks 
Mark allocation  

• 1 mark for simplifying to find π2
6

x = .  

• 1 mark for finding all solutions. 

Tip 

• The word ‘hence’ gives the hint that something from the previous part of the 
question is used to find the answer. So, use the information given in part a to 
answer part b.
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Question 5 – continued 
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Question 5 

a. Sketch the graph of ( ) ( ) π3arcsin 1
2

f x x= + −  on the axes below, showing the 

intercepts and endpoints in exact form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Worked solution 

Graph of )arcsin(xy = has been dilated by a factor of 3 from the x-axis, then translated 1 unit 

left and π
2

 units down. 

Domain    Range 

x ∈ [–2, 0]   [ ]π π π π3 , 3 2π, π
2 2 2 2

y ⎡ ⎤⎛ ⎞ ⎛ ⎞∈ × − − × − = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

∴  Endpoint coordinates are (–2, –2π) and (0, π). 
 
At x-intercept, y = 0: 

( ) π3arcsin 1 0
2

x + − =  

        ( ) πarcsin 1
6

x + =  

                     π1 sin
6

x ⎛ ⎞+ = ⎜ ⎟
⎝ ⎠

 

                     
2
11 =+x  

                          
2
1

−=x

O 

y 

x 
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3 marks 
Mark allocation  

• 1 mark for Endpoints 
• 1 mark for Intercepts 
• 1 mark for Shape 

 
 
b. Find ( )xf 1−  stating its domain. 
 
Worked solution 

( ) π3arcsin 1
2

x y= + −  

Make y the subject: 

( ) 1 πarcsin 1
3 2

y x⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 

             1 π1 sin
3 2

y x⎛ ⎞⎛ ⎞+ = +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

         ( )1 1 πsin 1
3 2

f x x− ⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

      1A 

Domain f –1 is x ∈ [–2π, π]. This is the range of f.    1A 

2 marks 
Total 3 + 2 = 5 marks 

 

Mark allocation  

• 1 mark for finding the inverse equation  
• 1 mark for finding the range of  f –1 

Tip 

• An inverse equation is found by swapping x and y. 

y 

x 
–2 

π 

–2π

2π

–π

2 

(0,π) 

(–2,–2π) 

–½ 
(–1,– π

2 ) 
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Question 6 

Find ∫ +
+ dx

x
x

2
1

2 . 

 
Worked solution 

∫∫ +
+

+
dx

x
dx

x
x

2
1

2 22        1A 

Integrating  ∫ +
dx

x
x

22 : 

∫ +
= dx

x
x

2
2

2
1

2  

du
u∫=
1

2
1  

( )21 log 2
2 e x= +         1A 

 

Integrating  ∫ +
dx

x 2
1

2 : 

( )∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
= dx

x 22
2

2
2

1  

⎟
⎠

⎞
⎜
⎝

⎛
= −

2
tan

2
1 1 x          

 

( )2 1
2

1 1 1log 2 tan
2 2 2 2e

x xdx x c
x

−+ ⎛ ⎞∴ = + + +⎜ ⎟+ ⎝ ⎠∫     1A 

3 marks 
Mark allocation  

• 1 mark for correctly splitting the integral into two parts. 
• 1 mark for integrating one part of the integral. 
• 1 mark for correct solution. 

Tip 

• Solve by splitting the integral into two parts. 
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Question 7 – continued 
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Question 7 

Given the differential equation 
2

3+
=

y
dx
dy  

a. Use 3,2,1,0,1,2,3 −−−=y  to sketch a slope field of the differential equation at 
each of the values 3,2,1,0,1,2,3 −−−=x . 

Worked solution 
 

y –3 
 

–2 –1 0 1 2 3 

dx
dy  

0 0.5 1 1.5 2 2.5 3 

 
Correct gradients       1A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1A 
 
 
 

2 marks 
 
Mark allocation  

• 1 mark for finding the gradients at the given values of x. 
• 1 mark for graphing the gradients correctly. 

Tip 

• Calculate gradients by substituting the y values into the differential equation.  

For example, when x = –3, 0
2

33
=

+−
=

dx
dy . 

y

x

–3

–1

–2

1

3

2 

31 2–1 –3 –2 O
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Question 8 – continued 
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b. If y = –2 when x = 1, solve the differential equation to find y in terms of x. 
 
Worked solution 

3
2
+

=
ydy

dx ,  y ≠ –3 

   2 log 3ex y c= + + ,  y ≠ –3      1A 
 
Given that y = –2 when x = 1: 

1 2 log 2 3e c= − + +  

( )1 2log 1e c= +  
1=c           1A 

 

Finding y in terms of x: 
            2 log 3 1ex y= + + ,  y ≠ –3 

( )1 1 log 3
2 ex y− = + ¸  y ≠ –3 

           
( )1 1

2 3
x

y e
−

= −         1A 
3 marks 

 Total 2 + 3 = 5 marks 
Mark allocation  

• 1 mark for integrating to find x in terms of y.  
• 1 mark for finding the constant term.  
• 1 mark for finding y in terms of x. 

Tip 

• Take reciprocals of both sides of the equation. 
 

Question 8 
 
 
 
 
 
 
 
 
 
 
 
 
The area between the graphs of ( )xy 3sin=  and ( )xy 3cos=  shaded in the diagram above is 
rotated around the x-axis to form a solid of revolution.  

Find the exact volume of this solid. 
 

y 

x
O 



 

Copyright © Insight Publications 2008 
 

12

Worked solution 

Tip 

• Solve ( ) ( )xx 3cos3sin =  to find point of intersection of the curves. 
( )
( ) 1
3cos
3sin

=
x
x  

 ( ) 13tan =x  

         π3
4

x =   

           π
12

x =         1A 

 

The volume of revolution is rotated around the x-axis. 

Tip  

• ( ) ( )xx 3sin3cos >  over the interval π0
12

x≤ < . 

( ) ( )( )
π

12
2 2

0

π cos 3 sin 3V x x dx= −∫       1A 

( )
π

12

0

π cos 6V x dx= ∫  

( )
π

12

0

1π sin 6
6

V x⎡ ⎤= ⎢ ⎥⎣ ⎦
       1A 

( )π πsin 6 sin 0
6 12

V ⎛ ⎞⎛ ⎞= × −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

π πsin 0
6 2

V ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

( )π 1 0
6

V = −  

π
6

V =   cubic units        1A 

4 marks 
Mark allocation 

• 1 mark for finding the point of intersection of the curves. 
• 1 mark for writing a correct integral to find the volume. 
• 1 mark for integrating. 
• 1 mark for finding the correct volume.
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Question 9 – continued 
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Question 9 

Let ( )xxxy 12 cos1 −−−= . 

 

a. Show that 212 x
dx
dy

−= . 

 
Worked solution 

  ( )xxxy 12 cos1 −−−=  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−×−×+−=

−

2
2
1

22

1
121

2
111

x
xxxx

dx
dy    1M 

22

2
2

1
1

1
1

xx
xx

dx
dy

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−−=       1A 

2

2
2

1
11

x
xx

dx
dy

−

−
+−=  

22 11 xx
dx
dy

−+−=  

212 x
dx
dy

−=         1A 

3 marks 
Mark allocation 

• 1 mark for using correct method to differentiate. 
• 1 mark for simplifying the expression for the derivative. 
• 1 mark for further simplification leading directly to the answer. 
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b. Hence, determine the exact value of dxx∫ −
1

2
1

21 . 

 
Worked solution 

( )xxxdxx 122 cos112 −−−=−∫   (From part a.) 

( )[ ]1

2
1

12
1

2
1

2 cos1
2
11 xxxdxx −−−=−= ∫  

( )( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−−−−= −−

2
1cos

2
11

2
11cos111

2
1 1

2
12    1A 

( )1 1 3 π0
2 2 4 3
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

1 π 3
2 3 4
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 

π 3
6 8

= −          1A 

2 marks 
Total 3 + 2 = 5 marks 

 
Mark allocation  

• 1 mark for using the result of a. to evaluate the integral. 
• 1 mark for the answer.
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Question 10 – continued 
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Question 10 
A crate of toys of mass 10 kg is sitting on the floor of a room. 

a. A child starts to pull the crate with a horizontal force of 20 newtons so that it is on the 
point of moving. Show that the coefficient of friction between the floor and the crate of 

toys is 
g
2 . 

 
 
 
 
 
Worked solution 
N normal reaction 

Fr  friction 

10g weight force 

20 child’s pulling force 

 
μFr N=  

 
 
Resolving forces in a vertical direction: 

gN 10=  

 
The crate is on the point of moving, so the forces are in limiting equilibrium, i.e. a = 0. 

Resolving forces in a horizontal direction: 

       aFr 1020 =−         1A 

      20 μ 10 0N− = ×  

20 μ 10 0g− × =         1A 

                2μ
g

=  

2 marks 
 

Mark allocation 
• 1 mark for resolving forces. 
• 1 mark for simplification leading directly to the answer. 

Tip 

• First draw the forces acting on the diagram before doing any calculations. 
 

20 N10 kg 

N

20 N 10 kg 

10g

Fr
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Question 10 – continued 
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b. Determine the maximum force, P newtons, that can be applied to the crate at an angle of 
45° to the horizontal level without moving it. 

Express your answer in the form 
bg

agP
+

= , where a, b ∈ R.  

 
 
 
 
 
 
 
 
Worked solution 

 
 
 
 

( )°45sinP   Vertical component of P. 
 

( )°45cosP   Horizontal component of P. 
 
 
 
 
 
 
Resolving forces in a vertical direction: 

( ) gPN 1045sin =°+  

    gPN 10
2

1
=×+  

                   
2

10 PgN −=  …(1)      1A 

Resolving forces in a horizontal direction: 

The crate is on the point of moving, so a = 0. 

( ) 01045cos ×=−° FrP  

        ( ) FrP =°45cos  

             1 μ
2

P N× =  

                   N
g

P
×=

2
2

 …(2)      1A 

 

P 

N 

10g 

Fr 45°

P 

45°
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END OF SOLUTIONS BOOK 
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Substituting (1) into (2): 

         ⎟
⎠

⎞
⎜
⎝

⎛
−=

2
102

2
Pg

g
P        1M 

            ⎟
⎠

⎞
⎜
⎝

⎛
−=

2
1022 Pg

g
P   

            
g
PP 2220 −=  

   2202
=+

g
PP  

gPPg 2202 =+  

 ( ) ggP 2202 =+  

            
2

220
+

=
g

gP  newtons       1A 

4 marks 
Total 2 + 4 = 6 marks 

 
Mark allocation  

• 1 mark for finding one equation for N in terms of P. 
• 1 mark for finding another equation for N in terms of P. 
• 1 mark for attempting to solve these equations to find P. 
• 1 mark for the correct answer. 

Tip 

• First draw the forces acting on the diagram before doing any calculations. 


