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SECTION 1

ANSWERS
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SECTION 1

Question 1 Answer D

The quadratic in the denominator x>+ 2bx+9 has a discriminant of

A=(2b)" - 4:x9=4b* ~36 = 4(b* -9) so

If A<O | b | < 3 the quadratic has no real solutions, and hence f (x) has no vertical
asymptotes, option A. is true.

If A>0 | b | >3 the quadratic has two real solutions, and hence f (x) has two vertical
asymptotes, option B. is true.
The x-axis is a horizontal asymptote, option C. is true.

however option D. is false, when 2x+2b=0 x=-b, the point (—b,ﬁj isa

maximum turning point.

When x=0 vy :% as the y-intercept, option E. is true.

Question 2 Answer D

Find the intercepts of the two asymptotes, 3x+11=-3x-7 = 6x=-18
So that when x=-3 y =2, the centreis (-3,2)=(h,k) , h=-3 k=2,

now the distance from the centre to one of the vertices horizontally, that is from

(-3,2) to (-1,2) is 2 units,so a=2 , the asymptotes have gradients +3 :%
sothat b=6.

Question 3 Answer C

V5 A
2

— 1 —
cosec(x) = SN (x)

sin(x):% 2 J5

Since %< X<z X isin the 2nd quadrant \

tan(x)<0 = tan(x)=-2

tan(2x) = 2@n(x) _ -4 _
C1-tan’(x) 1-4
3

wl >

cot(2x) = Z

© KILBAHA PTY LTD 2007
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Question 4 Answer E
r(t)=cos®(2t)i+cos(4t)]

x=cos?(2t) and y=cos(4t)=2cos’(2t)-1

y =2x—1 is the Cartesian equation, which is a straight line.

Question 5 Answer C
4
y= axX2+ b _ ax? 4 bx?
Y pax—20x* for turning points Y _y
dx dx
2b s_b 2 b : .
=2ax=— X =3 Xt =t~ however there are two turning points, so there
X

are solutions for x* = \ﬁ so a and b must both be positive, or both be negative,
a

the product ab>0so a<0 and b<0 or a>0 and b >0 isthe only possibility
listed.

Question 6 Answer C

icis(—0)

=i(cos(—6)+isin(-0)) since cos(-0)=cos(#) and sin(-0)=-sin(6)
=i(cos(0)—isin(0))

=—i’sin(@)+icos(0)

=sin(@)+icos(6)

Question 7 Answer E
Im(z)
A
V is the reflection of v in the . o
real axis, u is a rotation of V
90° anti-clockwise from v, v
hence u=iv A o
A
S » Re(z)
[ J
v
© KILBAHA PTY LTD 2007
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Question 8 Answer B

Arg(a+bi)= tan‘l(gj, is only true, where the tan™ function is defined, that is

(—%%j or in the 1%and 4™ quadrants, so a>0 and beR

Question 9 Answer E

Let z=x+yi Z=x-yi, checking each alternative,

A i(z+7)=7-2 = 2ix = -2iy = y=-X

B. |z+1]=[z-i] :>\/(x+1)2+y2:\/x2+(y_1)2
X+ 2X+1+ Yy =X +y? -2y +1 =y=—X

C. |z=1]=|z+i| =(x=1)+y* =¥ +(y+1)’
X2 —2X+1+y =X +y? +2y+1 — y=—X

D. Re(z)+Im(z)=0 =y=-X

E. {z:Arg(z)= —%}U{ZZAI’Q(Z) :3%} are two rays from the origin, making angles

of —% and 377[ however the origin is not included, it is not the full line y =—x

Question 10 Answer E

If we look at the parametric graphs, we see that the paths cross twice,
the paths are not parabolic and since,

p=(t*—6t+8)i+(t"~5t+6)j
p=(t-4)(t-2)i+(t-3)(t-2)]

p(2)=q(2) and p(3)=q(3)
P and Q are never in the same position.

Flakl Flakz Flakz

wdyr BTE-E#T+E

iy BTE-54T+E f4
wHar BTE-7T#T+12

ey BTE—daT+3
wEET
YW
wEUT

© KILBAHA PTY LTD 2007



Specialist Mathematics Trial Examination 2 2007 Solutions Section 1 Page 7

Question 11 Answer D
- .
PM==P

= Q

OP=p and 0Q=g M

OM =OP + PM
m=cﬁ+§p—q
OM ~OF +(FG+00) Q
3,
OM =OP +7(OQ—OP)

W:%(4p+3g)

Question 12 Answer A

Let a=5i-4j+3k  |a|=v/25+16+9=+/50 =512

now a vector of magnitude 10 in the opposite direction to a is

=2(-5i+4j-3k)

Question 13 Answer A

Let s=-3i+12 j—4k [s|=+/9+144+16 =169 =13 so that g:%(—31+12j—4|5)
The scalar resolute of the vector r in the direction of s is -2, sothat r.§=-2

The vector resolute of r perpendicularto s is [—([.5)5:%(201—2j—21lg)
r+3(—3i +12j—4k)=i(20i —2j—21k)
KA A

[:%(201—23—2115)—%(—31“2!—415)2%(261—26j—1315)
r=2i-2j-k

© KILBAHA PTY LTD 2007
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Question 14 Answer A

2 @

| e

0 3X°*+4

let u=3x*+4 d—u=6x xdx:ldu X2=U_—4
dx 6 3

change terminals, when x=0 u=4 andwhen x=2 u=16

1 (fu-4

2 X2
——_ xdx=—| —du
L V3% +4 18), u

Question 15 Answer C
Lety, =1and y, = 2e™ , to find the x-value where Y, =Y,
2e =1 e _1 e =2

2

x* =log, (2) x = /log, (2)

2 - -
Now Y’ =4e* so the volume required is

b
V, = 7z_|.(y22 — yf)dx where y, and y, are the inner and outer radii respectively,

V=zf '°ge<2)(4e—2X2 ~1) dx

Question 16 Answer B

v2=9x for x>0,
differentiating implicitly with respect to x, gives

2vﬂ:9
dx
so that a=vﬁ=g=4.5
dx 2

© KILBAHA PTY LTD 2007
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Question 17 Answer C
N
- > A T
uN
D — 0\
v
mg
resolving parallel to the plane (1)  Tcos(d)-uN=ma

resolving perpendicular to the plane (2)  Tsin(6)+N-mg =0
to find a we need to eliminate N
from (2) N =mg-Tsin(#) substituting into (1) gives

T cos(6)—u(mg —T sin(6))=ma
ma =T cos(&)— umg + T sin(6)
ma =T (cos(@)+ usin(6))- umg
T .
a m[cos( )+ usin(6) |- ug
nowwhen T=30N m=10kg «=02 g=98 a="?
a =3[ cos()+0.2sin(6) |-1.96, checking each alternative
0=0 = a=1.04m/s?
=5 = a=1.08m/s’
=10 =a=11m/s’

6 =15 — a=1.09m/s?

m o o w >

6 =20 = a=1.06m/s?

© KILBAHA PTY LTD 2007
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Question 18 Answer D
A. resolving vertically
Pcos(6)-Qcos(90-6)=0
Pcos(6)=Qsin(0)
P Q 0
sin(0) cos(6)

O

Pcosec(0)=Qsec() is true

90-46

R? =P*+Q? is true Q

C. resolving horizontally ~
R—Psin(6)-Qsin(90-6)=0
R=Psin(8)+Qcos(8) s true

. P sin(0)
D. P )= o —= =tan(4
cos(6)=Qsin(¢) = 0 an(0)

cot(6) :% D. is false

E. P+Q+R=0 is true

Question 19 Answer A

Using implicit differentiation x*> —6xy —16y* =0.

d (xz)_i(6xy) d (16y*)=0 using the product rule in the middle term

dx dx' 7 dx
d, d d d 2
—(X°)—-6Xx—(y)-y—(6Xx)——(16y“)=0
dx( ) dx(y) ydx( ) dx( y )
d, d dy d d 2\ dy
—(x°)-6x—(y)——-y—(6x)——(16y° )—=0
dx( ) dy(y)dx ydx( ) dy( y )dx
2x—6xﬂ—6y—32yd—y:0
dx dx
dy . dy_ dy
2X—6y =32y —+6X—=—(32y +6X
y yder dx dx( y+6x)
Yy = _X=3y A. is false, all the options are true.
dx 16y+3x
B. is true @ _1 my =2 C.istrue ay 1
dX| o, 2 dx (2%] 8
D. is true ay _ 1 D. is true ay 1 m, =-8
dX| g 4) 2 dX| gy 8

© KILBAHA PTY LTD 2007
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Question 20 Answer B

Initially no x is present, x(O) =0, after a time of t, equal parts of x combine, leaving

(a—x) and (b-x) of aand b respectively, since k >0 and initial the reaction rate is
fastest, and slowing down as time goes on, the solution is B.

Question 21 Answer B

Consider the mass m, moving downwards, resolving downwards,
(1) m,g-T =m,a

Consider the mass m, moving upwards, resolving upwards,

(2) T-mg=ma

to solve for a add the two equations to eliminate T

m,g —mg =m,a+ma

so that (m,-m)g=(m+m,)a
az(mz_—ml)gzg and

m, +m, 5 T A AT
m-m 1
m+m, 5

m

&_1 ml 2
m__1 let a=—2
1+ ™ My \ 4

m, .
a-1 1 m,g 2d
aeoo- 5(a-1)=5a-5=a+l 4a=6 '
a+l 5

3
o =—

2
Question 22 Answer D

All the slopes ( dashes are positive slopes ) at x=0 t=0 the slope is 2,

The solution curves are of the form x=C —e ™', differentiating gives

X . . .
?j_t =2e™ as the differential equation

END OF SECTION 1 SUGGESTED ANSWERS
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SECTION 2
Question 1
a. f(x):5Osin1(—Xl_oloj: y:SOSinl(%j where u=x-10
dy 50 du_,
du  100-u? dx
f-Q o 80 50
dx dudx  y100-u* [100-(x-10)
50 50
f’ X)= =
) J100—(x* ~20x+100)  ¥20x-X’
f’(x):L for 0<x<20
x(20-x)
SO a=50 b=20
: R
30

10

x—10

solving 50sin™ (—j =30
10

on a graphics calculator

InkgFseckion
n=it

(15.6464,30 ) EMBY etz

so the diameter is 31.2928cm

© KILBAHA PTY LTD 2007
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Alternatively sin™ (X_—loj _3 X=10 _din (Ej
10 5 10 5

x=10+10sin (gj ~15.6464 so the diameter is 31.2928cm

b
d. i. Vy:ﬁfxzdy

y=505in‘1(x_loj l:sin‘l(x_loj
10 50 10

sin(ljzx_lo M1

50) 10
x =10 +10sin(lj
50

30

2
V= ;zJ (10 +10sin (lD dy Al
50

0

ii. using a graphics calculator V =15,964.301 cm® Al
Flokl_Flatz qou EgnInt{¥33=H=E=
Srigy minicinm1e 15964, 381
~N ez BEE
SMEElIBHIEsindEsD
il
wy=
~Ne=
e. when the bowl is filled to a height of h its volume is
h
2
V=r 10+105in(lj dy so that
50
0
2
d—V: 71 10+10sin n and given d—V:—lOcme‘/sec Al
dh 50 dt
dh_dnh dv _ ~10 . when h =25 M1
dt dv dt ([ h
Ve 10+10sm(j
50
dh -10
ki NS
7{10+1Osin(jj
2
dnh

— =-0.015cm/sec
dt

the water level is falling at 0.015cm/sec Al

© KILBAHA PTY LTD 2007
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Question 2
OA=a=2i+3j+k

OC=c=3i-j-2k

OB=b=5i+y j-3k
OD=d =-3i+4 j+6k

a. If |AT;,|=13 y="?

X

AB=AO+0B =0B-0A=(5i+yj-3k)-(2i+3]+
AB =3i +(y-3) j -4k

)

M1

[AB|=\/9+(y~3)° +16 = /25+(y~3)° =13

25+(y—-3)" =169

(y-3)" =144

y—3=+12

y =15 or y=-9 both answers are acceptable Al

b. If AB makes an angle of 135° with the z-axis, y =?

4 V2

cos(135°)=———— M1

J25e(y-3f 2
8:\/2(25+(y—3)2)

64=2(25+(y-3)|

32=25+(y-3)’

(y-3)'=7

y—3:iJ7

y=3+ J7 both answers are acceptable Al

c. If AB is perpendicular to CD y=? AB.CD=0
CD =CO+0D =0D-0C =(-3i+4 j+6k)—(3i - j-2k)
ﬁ:—61+5j+83
AB.CD=-18+5(y-3)-32=0
5(y-3)=50
y—-3=10
y=13 Al

M1

© KILBAHA PTY LTD 2007
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d. If AB isparallelto CD then AB=ACD M1
?:—%ﬁ fromthe i and k components,
it must also be true for the J so that y—3:_7
1
== Al
y 2
e.  CA=CO+O0A=0A-0C =(2i+3j+k)—(3i-j-2k)
CA=—i+4]+3k ICA|=1+16+9 =26
CD =-6i +5]j +8k [CD|=/36+25+64 =125 =55 M1
CA.CD =6+20+24=50
cos(/DCA) = CA-CD __ 50 25 130 AL

) [cAJco] seE Vw1

Question 3

a.

u=225 v=175 s=8
using constant acceleration formulae

S=[u+vjt 8=(17'5+22'5)t
2 2

t=0.4 sec

vi=u?+2as 17.5*=22.5%*+16a
a= —200 _ —-12.5m/s?

© KILBAHA PTY LTD 2007
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h h=+426-20
/ h=1/6
[ v
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b.
for forces on the diagram Al
ii. now P=120,000W R=16v>° m=500kg & =20°
resolving up and parallel to the slope
E—R—mgsin(é?):ma Al
v
500a = 229900 16,2 5009 sin(20°)
v
2
a:@—ﬂ—gsin(zoo) Al
v 125
ii. Use a= vﬂ
dx
dv  30,000-4v°-125gvsin(20°)
dx 125v M1
2
dx = 125v° dv Al
30,000 -4v° —125g vsin(20°)
the distance travelled from rest to 17.5 m/s, is the definite integral
17.5
2
X= 125v - dv Al
30,000 -4v° ~125g vsin(20°)
0
iv. using a graphics calculator the distance is 27.80 m Al
Flotl Flakz Flekz niln 12k
M1 8125 3A0E6 2
ot B A e = =T 27 .08
Einc2Ea
~e=
nhly=
~My=
mhE=

© KILBAHA PTY LTD 2007
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Question 4
2(5-+/5
a. Given that cos(ﬁjz >+l and sin(zjzM
5 4 5 4
cos(2A) =cos’(A)-sin’(A) M1
(%)) ()
cos| — |=cos sin
5 5 5
2
2 | ]2(5-5
o 2) [(E2)_| 20
5 4 4
cos[ 2% _5+2\/§+1_2(5—\/§)
5 16 16
27\ af5-4 4(~5-1)
cos| — |= =
16 16
cos 2 :E Al
5 4
b. using sin®(A)=1-cos’( A)
sin’ 2z :1—0052(2—”j
5 5
M1
1Y 5-245+1
Sin2 2_72- =1- @ :1_g
5 4 16
27 16—(6-2v5)
sin’| — |=——————M—~
5 16
sin2[ 27 _10+2\5
5 16
2(5+/5
sin’ 2z :u since sln(2 j>0 take the positive only
5 16 5
2(+5+5
Sin(z_ﬂ):g Al
5 4

© KILBAHA PTY LTD 2007
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21

C. 4 \/\/5_1+ 2(SJM/E)i

4 4

(o5

(ol

=4cis| —

=4cis| ——4rn
=4cis Ej

541+ i 2(5—\6)

o (18 (PE-5))
=(4cos(%J+4'sm(%J

. (cos( s”lw(%n

is a real number, so that the imaginary part must be zero

mn(n”)zo
5

M:kﬂ
5

n=5k where kel

© KILBAHA PTY LTD 2007
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e. z° =-32=32cis(7 + 2kx)

.[7[ 2k7rj
Z=2cCIS €+—

k=0 z:2cis(%)=%[(x/§+1)+(2(5—\/§))i}

k=-2 z:Zcis(—B—ﬂ)
5

there are 5 roots, all the roots are equally spaced by

E or 36° around a circle of radius two, there is one real

root and two pairs of complex conjugates.

For the five roots on the diagram below

.-

-

© KILBAHA PTY LTD 2007
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Question 5

dy
a. —=10-gt-0.2

ot g y

3—¥+0.2y =10-gt y(0)=15

k=02 b=10 vy,=15 Al

dy
b. - f(y,t)=10—gt-0.2y y(0)=15

Euler’s method Yo=15 t,=0 h=0.2

Y = Yo +hf (¥y,t,)=1.5+0.2(10-9.8x0-0.2x1.5) =3.44 M1

Y, =Y, +hf(y,,t,)=344+0.2(10-9.8x0.2—-0.2x3.44)

y, =4.9104 Al

t
C. differentiating y(t) =295-293.5e °—49t with respect to t
_t _t
3—{20.2x293.5e °>—-49=58.7e >-49 Al
substituting into LHS
_t L
OI—y+0.2y =58.7e 5—-49+0.2| 295-293.5e °>—49t
dt M1
=-49+59-49tx0.2=10-9.8t = RHS shown
also it satisfies the initial conditions y(0)=295-2935-0=15
_t

d. solving y(t)=295-2935e °-49t=0

on a graphics calculator gives t=T =2.02676

202676

y(2.02676)=295-293.5e ° —49x2.02676~0 shown Al
e. the horizontal component of velocity x=10 so x=10t

horizontal distance travelled

x(2.0267)=10x2.02676 = 20.268m Al
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f.

ot
for maximum height % =58.7e 5-49=0

t
58.7¢e 5 =49

e_é =4_9
58.7
490
t=5log, (@j ~0.9031
490

The time to reach maximum height is 0.903 sec

For maximum height

y(0.9031) =295-293.5e ° -—49x0.9031

The maximum height reached is 5.748m

horizontal distance travelled at this time
x(0.9031) =10x0.9031=9.031m

x=10 always,

when it hits the ground y =10-9.8x2.0267 = —9.862

the speed v = \/XZ +y? =+/10° +9.8622

speed v =14.045 m/s

the angle at which it hits the ground is
y is downwards since it is negative

w = 44°36

© KILBAHA PTY LTD 2007
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i. graph passes through y-axis at y=1.5,
only for 0<x<20.268
graph is not symmetrical, not parabolic, Al
maximum at (9.031,5.748)

X
-5 4
Fletl Flotz Fleks 17=10T ir=zoE-za5_
-1t 1T
Yy B295-293. 5™
C-B.2+T1—49T
wHET =
Ver=
wEET = T=8031
Mzr= [#=8.0%1 Y=EP4EE
17=10T Y1r=zBE-z03_

du/dk=-0.8618

END OF SECTION 2 SUGGESTED ANSWERS
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