

Trial Examination 2006

VCE Specialist Mathematics Units 3 & 4

Written Examination 1

Question and Answer Booklet

Reading time: 15 minutes
Writing time: 1 hour

Student's Name: _	 	
Teacher's Name: _		

Structure of Booklet

Number of questions	Number of questions to be answered	Number of marks
9	9	40

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.

Students are NOT permitted to bring into the examination room: notes of any kind, a calculator, blank sheets of paper and/or white out liquid/tape.

Materials supplied

Question and answer booklet of 8 pages with a detachable sheet of miscellaneous formulas in the centrefold.

Working space is provided throughout the booklet.

Instructions

Write **your name** and your **teacher's name** in the space provided above on this page.

All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2006 VCE Specialist Mathematics Units 3 & 4 Written Examination 1.

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

Question 1

0,
0

		1 marl
ŀ	Hence find a quadratic factor of the left-hand side of the equation.	
		2 mark
F	Find the third solution.	
		1 mark Total 4 marks
stic	on 2	
an	d C are three points on a plane such that $\overrightarrow{OA} = p$, $\overrightarrow{OB} = 3q - p$ and $\overrightarrow{OC} = 9q - 5p$.	
	Show that A , B and C are collinear.	

2 Copyright © 2006 Neap TEVSMU34EX1_QA_06.FM

3 marks

b. State the ratio $AB : BC$.	
	1 mark Total 4 marks
Question 3	
Prove that $\cos^2(2x) - \sin^2(x) = \cos^2(x)(2\cos(x) - \sqrt{3})(2\cos(x) + \sqrt{3}).$	
	4 marks
Question 4	
If $f(x) = \arctan(2x)$, find $f''(x)$.	
	······································
	3 marks

$\boldsymbol{\wedge}$	4	_
w	uestion	

proportional to the difference or the difference or the oven	from the oven and placed on a bench in the kitchen. The casserole's rate of cooling bench between its temperature and the temperature of its surroundings. When the casserole is at a temperature of 80°C, and it cools to 65°C in 10 minutes. If the nen is kept at a constant 20°C, find the exact time for the casserole to cool to 50°C.
	5 mark
Question 6 Tind the exact value of	$k \text{ if } \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{1-4x^2}} dx = k\pi.$
	4 mar

Trial Examination 2006

VCE Specialist Mathematics Units 3 & 4

Written Examination 1

Formula Sheet

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

SPECIALIST MATHEMATICS FORMULAS

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin(A)$

sine rule: $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$

cosine rule: $c^2 = a^2 + b^2 - 2ab\cos(C)$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$
 $\cot^2(x) + 1 = \csc^2(x)$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x) \qquad \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

function	sin ⁻¹	\cos^{-1}	tan ⁻¹
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (Complex numbers)

$$z = x + yi = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$$

$$|z| = \sqrt{x^2 + y^2} = r$$

$$-\pi < \operatorname{Arg}(z) \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\frac{d}{dx}(x^{n}) = nx^{n-1} \qquad \int x^{n} dx = \frac{1}{n+1}x^{n+1} + c, \ n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax} \qquad \int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x} \qquad \int \frac{1}{x} dx = \log_{e}(x) + c, \text{ for } x > 0$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax) \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^{2}(ax) \qquad \int \sec^{2}(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \int \frac{1}{\sqrt{a^{2}-x^{2}}} dx = \sin^{-1}(\frac{x}{a}) + c, \ a > 0$$

$$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^{2}}} \qquad \int \frac{1}{\sqrt{a^{2}-x^{2}}} dx = \cos^{-1}(\frac{x}{a}) + c, \ a > 0$$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^{2}} \qquad \int \frac{a}{a^{2}+x^{2}} dx = \tan^{-1}(\frac{x}{a}) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $(y_0 = b)$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

Vectors in two and three dimensions

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\underline{r}_1 \cdot \underline{r}_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$

Mechanics

momentum: p = my

equation of motion: R = ma

sliding friction: $F \le \mu N$

END OF FORMULA SHEET

Que	estion 7
Solv	we the differential equation $\frac{dy}{dx} - \sin(x)\cos^2(x) = 0$ given that $y(0) = -\frac{4}{3}$.
	4 mark
One	estion 8
	ft of mass 420 kg, containing a passenger of mass 80 kg, is descending with an acceleration of 1.8 m/s ²
7 1 11	
a.	Draw a diagram showing the forces acting on the lift.
b.	1 mar Find the tension in the lift cable.
υ.	Find the tension in the int cable.
	1 mar

c. Draw a diagram showing the forces acting on the passenger.

			-	
Т	m	a	r	k

d. Find the force exerted by the floor of the lift on the passenger.

1 mark Total 4 marks

Question 9

Consider the function with the rule $y = \frac{1}{x^2 + bx + c}$ where b and c are real valued constants.

a. Sketch the graph when b = 0 and c = 1 on the axes below, labelling any axis intercepts, stationary points and asymptotes.

1 mark

b.	What is the relationship between b and c so that the graph will have no vertical asymptotes?		

1 mark

Part of the graph of the function f, with rule $f(x) = \frac{1}{x^2 + bx + c}$ is shown below. The function has a turning point when x = -3 and a vertical asymptote with equation x = 0.

c.	Find	f'(x)	and us	e it to	show	that	b = 6

		2 marks
Find the value of c .		
rind the value of c.		

1 mark

d.

END OF QUESTION AND ANSWER BOOKLET