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2003
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(Analysis Task)
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QUESTION AND ANSWER BOOK

Directionsto students

Materials

Question and answer booklet consists of 16 pages. There is a detachable formulae sheet of
miscellaneous formul as at the end of the booklet.

Y ou may bring into the examination up to (two A4 sheets) of pre-written notes.

Y ou may use approved scientific and or graphics calculators, protractor, set square and aids for curve
sketching.

Thetask.

Write your student number in the space provided above.

This examination consists of 6 questions, there is atotal of 60 marks available.

Y ou should attempt all questions.

Y ou need not give numerical answers as decimals unless instructed to do so. A decimal approximation,
no matter how accurate will not be accepted if an exact answer is required to a question.

Calculus must be used to evaluate derivatives and definite integrals. A decimal value no matter how
accurate, will not be rewarded unless the appropriate working is shown.

Unless otherwise stated, diagrams in this book are not drawn to scale.

All responses should be in English.




SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directionsto students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.




Mensuration
area of atrapezium:

curved surface area of acylinder:

volume of acylinder:

volume of a cone:
volume of a pyramid:
volume of a sphere:

areaof triangle:
sinerule:

cosinerule:

Specialist M athematics Formulas

Z(a+b)h

2nrh

ar’h

iar’h

1Ah

4

sbcsinA

a b _c
snA snB sinC
¢’ =a’+b*-2abcosC

Coordinate geometry

(x=h)?  (y-K* _,

ellipse: 7 07
_ 2 A Y
hyperbola: (x azh) _b bzk) =1

Circular (trigonometric) functions

cos’ X +sinx=1
1+ tan’ X = sec® x
Sin(X + y) = SinXcosy + cosxsiny
COS(X + Y) = COSXCOSY —Sinxsiny

cot’+ 1= cosec’ X .
Sin(x—y) =siNXcosy — cosxsiny
COS(X — Y) = COSXCOSY +sSinxsiny

tan(x + y) = tanx +tany tan(x— y) = tanx —tany
1-tanxtany 1+tanxtany
C0S2X = COS” X — Sin? X = 2c0s* X —1=1—2sin* X
. . 2tanx
SIN2X = 23N XCOSX tan2x = s
1-tan“ x
Function Sin® Cos™ Tan™
Domain [-11] [-11] R
range =z [0,7] o
2'2 2'2




Algebra ( Complex Numbers)

z=x+yi=r(cosq+ising)=rcisq

d=yx*+y* =71 -p<Argz£p
. L.

2z, = 1, Cis(q, + g,) %= - k4 - )

Z" = r"cig(ng) (de Moivre's theorem )

2

Vectorsin two and three dimensions

F=x +yj+2zk

= — 2 2 2 = = —_
[Fl=yx®+y*+2° =7 [.F, = 11,C0SG = XX, + Y,Y, + 22,

- dr _dx. dy. dz-
=—=—1+—=|+—Kk
Tad d T ar

M echanics
momentum: p=nv
equation of motion: R =ma

diding friction: F£nmM

constant ( uniform ) acceleration:

1 1
v=u+at s:ut+§at2 vZ=U% +2as SZE(U+V)1'

2
acceleration: a= dx_dv_,dv_d (1v2)

o dt o dx  dx\?



Calculus

—(sinax) = acosax
O|X( )

i(cosax) =—asinax
dx B

jx”dx:—x“+1+c, n#-1

n+1
ax 1 ax
_[e dx=—e"+c
a
J.%dx:logex+c, for x>0
) 1
_[smaxdx:—acosax+c

1.
_[cosaxdx: gsmax+c

2 1
jsec axdx = atanax+c

i(tanax)— asec® ax
Otle - 1 j—?x - :Sin‘1§+c, a>0
—(Sin"'x) = va’ - x a
dx 1= X2 -1 X
d -1 j—z 2dx:Cos a+c,a>0
&(Cos‘lx): . va —X y
q V1=X _[—Za sdx=Tan"=+c
_(Tan—lx): > a +X a
dx 1+ X
dv  du
duct rule: — =uU—+V—
product rule r (uv) udx+vdx
du dv
. d dx  dx
uotient rule:
q ) 2
. dy dydu
h le: —=——
chainrule o~ du dx
L 8 a+b
mid-point rule: J f(x)dx = (b—a)f (T)

a

b
trapezoidal rule:

a

Euler’s method

i Y
X

J f(x)dx = %(b— a)(f(a)+ (b))

o f(x),x,=aandy,=b, thenx, =X, +handy,,, =y, +hf(x)
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Question 1
L . B (T
Let u=;(«@ |) and V—\/ECIS(LJ

I Find uv working in Cartesian form giving your answer in exact a+ bi form.

2 marks

ii. Find uv working in polar form giving your answer in exact rcisf form.

2 marks
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iii. Hence deduce the exact value of si n(%)

2 marks

V. Using theformula s n(x - y) verify your exact value for si n(%)

2 marks
Total 8 marks
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Question 2

The diagram shows a wine glass with dimensions shown in centimeters, with the x and y axesas
shown.

> <

35

«—>
A B
19

A

11

YY — | ™™

i Write down the coordinates of the points A and B

1 mark

ii. If thearc AB can be modeled by acurve of the form y = ax” + ¢ show that
a=%and c=11

1 mark
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iii. If the glassisfilled to the top by rotating the curve y = ax” + ¢ about the y axis find using
calculus, the exact the volume of the glass.

3 marks

iv. If thearc AB can be modeled by a curve of the form y = A+ ¢e®
show that A=10and k=%log,9

1 mark
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V. If the glassisfilled to the top by rotating the curve y = A+ € about they axis set up an
integral for the volume of the glass, and find the volume of the glass correct to two decimal
places.

2 marks

Vi. If the glassisfilled to aheight h ( above the x axis) where 11< h <19 by rotating the curve

y = ax® + ¢ about the y axis show that the volume of wine in the cup is given by 4?V”(h—ll)2

1 mark
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vii.  Unfortunately one of the cups has asmall crack inthe base at the point A and the wine leaks
out at arate proportional to the square root of the remaining depth of wine. If initialy the glass
isfull and after three minutes the height of wineis 16 centimetres above the x axis, find how
long before the glass is empty. Give your answer to the nearest tenth of a second.

4 marks

Total 13 marks
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Question 3

A trainismoving along a straight line track at a speed of 57.6 km/hr when the driver brakes.

|

>

O O

a. Assuming a constant retardation of 3 m/s’ find how long(in seconds) and the distance traveled
(in metres) before the speed of thetrain is reduced to 14.4 km/hr.

2 marks
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b. The train has a mass 4096 kg and is moving along a straight line track at a speed of 57.6 km/hr
when the driver brakes. Thetotal resistance forceis 24v® Newtons where v m/secisthe
speed of thetrain at atimet seconds, and x isits distance from the point where the driver
applied the brakes.

i By choosing an appropriate form for the acceleration, show that a differential equation relating

vtoxis 512ﬂ =—23v?
dx

2 marks

ii. Find the exact distance traveled in metres before the speed of thetrainis
14.4 km/hr.

3 marks
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iii. Find the exact time (in seconds) to reduce the speed of the train from 57.6 km/hr to 14.4 km/hr.

3 marks

V. Expressthe velocity v in terms of the timet, and sketch the velocity time graph.

2 marks
Total 12 marks
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Question 4

a. A naughty child has let a supermarket trolley slide down aslope. The slopeisinclined at an
angle of 10° to the horizontal and the coefficient of friction between the trolley and the ground
is0.1. The combined mass of the trolley and shopping bagsis 32 kg.

i On the diagram below, mark in all the forces acting on the trolley asit slides down the slope.

\

1o°>

1 mark

ii. By resolving the forces, find the acceleration of the trolley as it moves down the slope, giving
your answer correct to two decimal places.

3 marks
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b. Unfortunately the lady has not finished her shopping and she must now push the trolley with the
shopping bags back up the slope. If her arms make an angle of 30° with the slope and the
coefficient of friction between the trolley and the ground is till 0.1. The combined mass of the

trolley and shopping bagsis still 32 kg.

i On the diagram below mark in al the forces on the trolley, as it moves up the slope.

1 mark

ii. If the trolley moves up the slope with constant speed, find the pushing tension in
the lady’ s armsin Newtons, giving your answer correct to two decimal places.

4 marks

Total 9 marks
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Question 5

A golf ball ishit on level ground so that its position vector at atimet seconds s given by
r(t)=8ti +50t]+12s n(%)l? for 0<t<T where i |andk areunit vectors of magnitude one

metre in the directions of east north and vertically upwards respectively,

i Show that thetimetaken T for the golf ball to hit ground level is three seconds

1 mark

ii. Find the initial speed of projection correct to two decimal places.

2 marks
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iii. Find how far from theinitial point of projection the golf ball strikes the ground, giving your
answer correct to the nearest metre.

2 marks

V. Find the when the golf ball reaches its maximum height and give its position vector at thistime.

2 marks
Total 7 marks
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Question 6

X

I State the maximal domain of the function f(x) = ex_4
X_

1 mark

. X . . . dy .
il. If = then find the gradient function — in simplest form.
y vbx—-4 g dx P

2 marks
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iii. Sketch the graph of y= «/5)(74 stating the coordinates of any turning points, equations of
X —_

any asymptotes and the range.

2 marks

V. Find the exact equation of the tangent to the curve at the point x=4

2 marks



2003 Specialist Mathematics Trial Examination 2 Page 16

V. Find an approximation using the trapezoidal rule to the area bounded by the curve y = c X 2
X —_

thex axisand thelines x=1and X =8 using each trapezium to have awidth of one unit, give
your answer correct to three decimal places.

1 mark

Vi. Find using calculus the exact area bounded by the curve y = «/5)(74 the x axis and the lines
X —_

x=1land x=8.

3 marks

Total 11 marks
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