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Multiple-Choice Answer Sheet

Student’s Name: __________________________________________________

Cross through the letter that corresponds to each answer.

1. A B C D E

2. A B C D E

3. A B C D E

4. A B C D E

5. A B C D E

6. A B C D E

7. A B C D E

8. A B C D E

9. A B C D E

10. A B C D E

11. A B C D E

12. A B C D E

13. A B C D E

14. A B C D E

15. A B C D E

16. A B C D E

17. A B C D E

18. A B C D E

19. A B C D E

20. A B C D E

21. A B C D E

22. A B C D E

23. A B C D E

24. A B C D E

25. A B C D E

26. A B C D E

27. A B C D E

28. A B C D E

29. A B C D E

30. A B C D E
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Part I (Multiple-choice questions)

Question 1

If then u2v equals

A.

B.

C.

D.

E.

Question 2

If , then is equal to 
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Question 4

Let and . is

A. -4

B. -4

C.

D.

E.

Question 5

For the triangle ABC, M is the mid-point of AC. The triangle would be an isosceles if

A.

B.

C.

D.

E.
1

2
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~ ~ ~ ~
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a b
~ ~
− = 0
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B
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M

C
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~ ~
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26
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~ ~ ~
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2 2i j k− +
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^

.( )b i j k
~ ~ ~ ~

= − +2 2a i j k
~ ~ ~ ~

= − + +3 4
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Question 6

The circle shown above is specified by

A.

B.

C.

D.

E.

Question 7

An antiderivative of is

A.

B. 8Cos-1(2x)

C. 16Cos-1(2x)

D.

E. Sin-1 2x( )

Cos-1 2x( )

− −16 1 4 2loge x

−

−

16

1 4 2
x

{ : }z z i− − =10 10 10

{ : }z z i i− − =10 10 10

{ : }z z − =10 100

{ : }z z i− − =10 10 100

{ : }z z i+ + =10 10 10

10i

Im z

Re z
10
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Question 8

The asymptotes of the hyperbola with equation are

A.

B.

C.

D.

E.

Question 9

When the rational expression is expressed as partial fractions they are

A.

B.

C.

D.

E.

Question 10
The position of a particle is given by . The cartesian equation of its

path is

A.

B.

C.

D.

E. y x= +36 16 2

x y
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3
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Question 11

A particle, initially at rest, has acceleration . If , then is

equal to

A.

B.

C.

D.

E.

Question 12

The velocity of a particle, at time t, is given by .

The magnitude of its acceleration at t = 6 is

A.

B.

C.

D.

E.

Question 13
Let and . The magnitude of the vector is

A. 30

B.

C. 11

D.

E. 38
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Question 14

Which one of the following differential equations is satisfied by ?

A.

B.

C.

D.

E.

Question 15

An antiderivative of is

A.

B.

C.

D.

E.

Question 16

If , then is equal to

A.

B.

C.

D.

E. 3 3 32tan(log )sec (log )e ex x
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sec (log ) tan2 3
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3
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1
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3
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Question 17

With a suitable substitution, dx can be expressed as

A.

B.

C.

D.

E.

Question 18

Let cosecx , ≤ x < π. The value of tanx is

A.

B.

C.

D.

E.

Question 19

The implied domain of the function with rule f(x) = Sin–1(x – a) is

A. [–1 – a, 1 – a]

B. [a – 1, a + 1]

C.

D.

E. [ , ]a
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Question 20

An antiderivative of is

A.

B.

C.

D.

E.

Question 21

If and = 4, then is equal to

A.

B.

C.

D.

E.

Question 22
A particle moves in a straight line so that its position at time t is given by

The initial velocity of the particle is

A. 5

B. 8

C. -8

D. 13

E. 21
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Question 23

Part of the graph of is shown above. If the trapezoidal rule with three equal

intervals is used to approximate the shaded area, its value, correct to 2 decimal places,

would be

A. 19.69

B. 14.50

C. 13.13

D. 6.56

E. 3.70

Question 24
A particle of mass 2 kg is acted on by a resultant force of newton. The magnitude

of the particle’s acceleration in m/s2 is

A. 1.3

B. 2

C. 2.5

D. 3.5

E. 10

( )
~ ~

4 3i j−

y x= −9 2

2

3

1

y

x32.521.510.50
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Question 25

Using the substitution , dx becomes

A.

B.

C.

D.

E.

Question 26

The region bounded by the coordinate axes and the graph of for is

rotated about the y-axis to form a solid of revolution. The volume of the

solid is given by

A.

B.

C.

D.

E. π
π
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0

2 x dx∫

π sin2

0

1

x dx∫
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−∫ 1

0

1
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( )2 86 5

4
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u u−∫ du
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0

1

u u−∫ du

( )2 46 5

0

1

u u−∫ du

( )2 46 5

4

5

u u−∫ du

2 4 5

0

1
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Question 27

The diagram shows all the forces acting on a block of mass 4 kg, which is being pulled up a

rough inclined plane at constant speed. The plane is inclined at 20° to the horizontal and the

coefficient of friction between the block and the plane is 0.3. The block is being pulled by a

rope which makes an angle of 30° with the plane. T newtons is the tension in the rope, N

newtons is the normal reaction of the plane on the block and F newtons is the frictional force

which is assumed to be limiting.

Resolving forces parallel to the plane gives

A. T cos 30° = 4g cos 20° – N

B. T cos 30° = 4g sin 20°

C. T cos 30° = 4g sin 20° + 2g

D. T cos 30° = 0.3N + 4g cos 20°

E. T cos 30° = 0.3N + 4g sin 20°

Question 28

A body is in equilibrium under the action of three forces F
~1, F

~2, and F
~3. If F

~1 = 3i
~

– 4j
~

and

F
~2 = 4i

~
+ 2j

~
, the magnitude of F

~3 to one decimal place is given by

A. 9.5

B. 9.0

C. 7.3

D. 5.0

E. 4.5

20°
4g

30°

N T

F
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Question 29

A particle moves in a straight line, such that its velocity is given by cm/s.

When x = 3 cm, its acceleration in cm/s2 is

A. 6

B. 9

C. 12

D. 54

E. 108

Question 30

This diagram shows a circle with centre O. Two tangents of the circle intersect at B and

intersect the circle at A and C. The angle <CDA is 70°. The angle <CBA is

A. 110

B. 65

C. 20

D. 40

E. 10

D

C

A

B

O
70°

θ°

v x= −( )2 3 2
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Part II (Short answer questions)

Question 1

An object is dropped from rest at time t = 0. A body falling from rest under gravity is

subject to air resistance proportional to its speed. Its acceleration is given by the

differential equation 

dv
dt

= g – k v,

where g is the acceleration due to gravity and k is a constant.

Express v in terms of t.

[3 marks]

Question 2

The position vector r
~
(t) of a particle at time t is given by r

~
(t) = (et sint)i

~
–(et cost)j

~
.

Show that the speed of the particle at any time t is given by √2
_

et.

[3 marks]
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Question 3

a m/s2

A 4 kg mass on a rough horizontal table is connected by a light string that passes over a

smooth pulley to a 3 kg mass. The direction of the acceleration is as shown on the diagram

above, and the coefficient of friction between the rough table and the 4 kg mass is 0.3.

a. Find, to one decimal place, the magnitude of the acceleration of the two masses.

b. Find, to one decimal place, the tension force, T, in the string.

[4 marks]

   4 kg

  3 kg

aa m/s2

F
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Question 4

a. On the set of axes below sketch the graphs of {z : Re(z) – Im(z) = –3} 

and {z : |z + 2 – i | = 3√2
_

}

b. Evaluate the points of intersection.

[3 + 2 = 5 marks]

Question 5

Use calculus to find the exact value of .

[3 marks]

Im(z)

Re(z)0
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Question 6

Given f ′(x) = 2x√x–2 and f(2) = 3, find f(x).

[3 marks]

END OF PAPER – TOTAL MARKS 51


