

PHYSICS Unit 3 Trial Examination

SOLUTIONS BOOK

Published by STAV Publishing, STAV House, 5 Munro Street, Coburg VIC 3058 Australia.

Phone: 61 + 3 9385 3999 • Fax: 61 + 3 9386 6722 • Email: stav@stav.vic.edu.au Website: http://www.stav.vic.edu.au © STAV Publishing March 2006

ABN 61 527 110 823

AREA 1 – MOTION IN ONE AND TWO DIMENSIONS

Q	Answer	Solution	
1	24 s	time = distance \div speed = $120 \div 5 = 24 \text{ s}$	
2	233 °	$\sin \theta = \frac{4}{5}$ $\theta = \sin^{-1} \left(\frac{4}{5}\right)$ $\theta = 53.13^{\circ}$ $\theta = 180 + 53 = 233^{\circ}$	
3	3 m s ⁻¹	bearing triangle above must be a 3 : 4 : 5 triad ∴ speed relative to river bottom is 3 m s ⁻¹	
4	40 s	time = distance \div speed = $120 \div 3 = 40$ s consequential answer: $120 \div$ answer 3	
5	2.25 m	Vertically: $u = 10 \sin 30^{\circ} = 5 \text{ m s}^{-1}$, $v = 0 \text{ m s}^{-1}$ (at the top), $a = -10 \text{ m s}^{-2}$, $s = ?$ $v^2 = u^2 + 2 \text{ a s}$ $0 = 5^2 - 20 \text{ s}$ 20 s = 25 s = 1.25 m height = 1.25 + 1.0 = 2.25 m	
6	1.0 s	Vertically: $u = 5 \text{ m/s}^{-1}$, $v = 0 \text{ m/s}^{-1}$ (at the top), $a = -10 \text{ m/s}^{-2}$, $t = ?$ $v = u + a \text{ t}$ $0 = 5 - 10 \text{ t}$ $10 \text{ t} = 5$ $t = 0.5 \text{ s}$ to the top \therefore total flight time = 1.0 s	
7	8.67 m	Horizontally: $u = 10 \cos 30^{\circ} = 8.67 \text{ m s}^{-1}$ $s = u \text{ t} = 8.67 \times 1.0 = 8.67 \text{ m}$	
8	E	Once the car is in flight, the only forces acting on it are air resistance (negligible) and gravity downwards in direction E.	

Q	Answer	Solution
9	friction	thrust
10	400 N	constant speed is reached when driving force = frictional forces after 80 m, frictional forces = 400 N = driving force
11	$4 \times 10^4 \text{ J}$	Work done = driving force \times distance = $400 \times 100 = 40,000 \text{ J}$ consequential answer: answer 10×100
12	2000 W	Power = $\frac{\text{work}}{\text{time}}$ = 40.000 ÷ 20 = 2000 W consequential answer: answer 10 ÷ 20
13	0.625 m s ⁻²	at 60 m. frictional forces = 350 N, driving force = 400 N $\therefore F_{\text{net}} = 400 - 350 = 50 \text{ N}$ acceleration = $F_{\text{net}} \div \text{mass} = 50 \div 80 = 0.625$
14	С	The gravitational pull of the Earth continues to provide the centripetal force required to keep the wrench in circular motion around the Earth even though the wrench is no longer in contact with the astronaut.
15	2.73×10^{-3} N kg ⁻¹	$g = \frac{GM_L}{r^2}$ = $(6.67 \times 10^{-11} \times 5.98 \times 10^{24}) \div (3.82 \times 10^8)^2 = 2.73 \times 10^{23}$
16	1.02×10^3	$v = \sqrt{\frac{GM_L}{r}} = \sqrt{(6.67 \times 10^{-11} \times 5.98 \times 10^{21} \div (3.82 \times 10^{8}))} = 1021.8$
17	11 m s ⁻¹	$p_{t} = m_{\text{van}} \times v_{\text{van}} + m_{\text{car}} \times v_{\text{car}} = 2200 \times 15 + 710 \times 0 = 33,000 \text{ kg m s}^{-1}$ $\text{conservation of momentum gives } p_{t} = p_{t} = (m_{\text{van}} + m_{\text{car}}) \times v_{\text{van & car}}$ $33.000 = (2200 + 710) \times v \implies v = 33.000 \div 2910 = 11.34$

Q	Answer	Solution	
18 :	37.4 m	work done to overcome friction = loss of kinetic energy $F_{friction} \times s = \frac{1}{2} \text{ m v}^2$ $5000 \times s = \frac{1}{2} \times 2910 \times 11.34^2$	
		$s = 187,106.6 \div 2910 = 37.4$ $consequential \ answer: 0.291 \times answer \ 17 \ squared$	

AREA 2 – ELECTRONICS AND PHOTONICS

Q	Answer	Solution
1	37 Ω	$R_{\text{parallel}} = (30^{-1} + 40^{-1})^{-1} = 17.14$
		$R_{\text{total}} = 17.14 + 20 = 37.14$
	5.5 V	Using the voltage divider formula with $R_1 = 20~\Omega$ and $R_2 = 17.14~\Omega$
2		$V_{40} = 12 \times \left(\frac{17.14}{20 + 17.14}\right) = 5.54 \text{ V}$
i		Consequential answer: 205.68 ÷ answer 1
		Students are likely to use many different methods.
	0.32 A	I ₂₀ is the same as the current flowing through the whole circuit.
		$1 = \frac{V}{R} = 12 \div 37.14 = 0.3231$
3		OR
		$V_{20} = 12 - 5.54 = 6.46 \text{ V} : I_{20} = 6.46 \div 20 = 0.323$
		consequential answer: 12 ÷ answer I
	3 V	Reading from the graph, 20 lux corresponds to a resistance of 600 Ω .
4		$V_{\text{out}} = 9 \times \left(\frac{300}{300 + 600}\right) = 3$
		· · · · · · · · · · · · · · · · · · ·

Q Answer Solution

gain = $\frac{\Delta V_{out}}{\Delta V_{in}}$ \Rightarrow $\Delta V_{out} = \Delta V_{in} \times \text{gain} = 6 \times 200 = 1200 \text{ mV} \text{ or } 1.2 \text{ V, equivalent to } \pm 0.6 \text{ V}$

 \therefore a sloping line is drawn on the graph from (-3, 0.6) to (0.3, -0.6) hence having a gradient of -200 (- for inverting, and 200 for the gain). Either side of the sloping line are two horizontal sections (not necessary for full marks).

Voltage Amplifier Characteristic

6	-0.6 V	For any input voltage above 3 mV, the output voltage will remain at -0.6 V. 4 mV is beyond the linear operating range of the amplifier. (No mention of cut-off or saturation is necessary for full marks.)
~	2.1. 1/	· · · · · · · · · · · · · · · · · · ·

/	2.1 m v	$V_{\text{peak}} = \sqrt{2} \times V_{\text{rms}} = \sqrt{2} \times 1.5 = 2.121$
8	120 Hz	input and output AC voltages will have the same frequency, just different peak values.

Line follows the x-axis from the left until about 0.7 V where it curves upwards indicating that the diode starts conducting when this voltage is applied across it.

10	220 kΩ	voltage drop across $R_b = 6 - 0.7 = 5.3 \text{ V}$ $R_b = V \div I = 5.3 \div (24.1 \times 10^{-6}) = 219.917 \Omega = 220 \text{ k}\Omega$
11	2.9 V	$I_c = 100 I_b = 100 \times 24.1 \times 10^{-6} = 0.00241 A$ $V_c = IR = 0.00241 \times 1200 = 2.892$
. 12	3.1 V	$V_{\text{out}} = 6 - V_{\phi} = 6 - 2.9 = 3.1$ consequential answer: 6 – answer 11

Detailed study 1 – Einstein's special relativity

Q	Answer	Solution	
1	Maxwell proposed that light was electromagnetic waves that travelled through a medium called the aether (or other).		
2	The purpose was to measure the speed of the Earth relative to the aether. The outcome was that the experiment failed to measure any movement. The motion of the Earth through the aether was undetectable.		
3	In this instance "pro relative to the object	per" refers to the measurement taken by an observer who is at rest being observed.	
4	1.25	$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \frac{(0.6c)^2}{c^2}}} = \frac{1}{\sqrt{1 - 0.6^2}} = 1.25$	
5	56 m	$l = \frac{l_o}{\gamma} = 70 \div 1.25 = 56$ consequential answer: 70 ÷ answer 4	
6		be length contracted to 56 m (consequential on Q5). The other nd height) will remain the same. 0.6 c 56 m	
7		$t_o = 10.0$ & $t = 24.3$ $\Rightarrow \gamma = t \neq t_o = 24.3 \Rightarrow 10 = 2.43$ $v = c \sqrt{1 - \frac{1}{\gamma^2}} = c \sqrt{1 - \frac{1}{2.43^2}} = c \times 0.911 \text{ or } 91.1 \text{ Ge c}$	
8	The relative velocities of distant stars and galaxies to the observer on Earth causes the light (travelling at a fixed value of c in all frames of reference) to undergo frequency shifts. This means that objects receding from the Earth undergo red shift (longer wavelengths) and those coming towards the Earth are blue shifted (shorter wavelengths). The fact that most objects are receding from the Earth (red shifted) gives credence to the concept of the expanding Universe and the big bang theory.		
9	$1.15 \times 10^{-13} \text{ J}$	total mass-energy = $\frac{1}{2}$ m _o v ² + m _o c ² = $\frac{1}{2}$ × 9.1 × 10 ⁻³¹ × (0.9 × 3 × 10 ⁸) ² + 9.1 × 10 ⁻³¹ × (3 × 10 ⁸) ³ = 3.31695 × 10 ⁻¹⁴ + 8.19 × 10 ⁻¹⁴ = 1.15 × 10 ⁻¹³	

Q			s and their use in structures		
	Answer		Solution		
1	<u> </u>	Justification is in Q2 belo	ow .		
2	Instability is caused by a high centre of mass (or centre of gravity) and a narrow base. Object C has an equally high c.o.m. as objects A & D, but object C has a narrower base.				
	Brittle materials	fail just after their elastic limit	t, ∴ B.		
3	Toughest material has the largest area under its graph, :. A.				
J	Material	Most brittle	Toughest		
	Graph	В	A		
4	The ductility of i	material A is indicated on the g	graph by elastic and plastic regions.		
	Any 2 of the foll	owing:	·		
	•		order to withstand high forces.		
5				ents	
	(i.e. rain).	2. Stainless steel resists rusting and so maintains its strength when exposed to the elements (i.e. rain).			
j	3. Stainless steel	wire provides good tension fo	or small mass which is important for airc	raft.	
6	$1.8\times10^4~\mathrm{N}$	$T = m g = 1.8 \times 10^3 \times 10 =$	= 1.8 × 10 ⁴		
į					
7	$\int_{+}^{+} \sigma = \frac{F}{A} = T \div \frac{\pi d^{2}}{4} = (1.8 \times 10^{4}) \div (\pi \times (7.0 \times 10^{-3})^{2} \div 4)$				
	A = A	$= (1.8 \times 10^4) \div (\pi \times (7.0) \times 10^4)$	$(0^{-3})^2 \div 4)$		
	+		$(0^{-3})^2 \div 4)$ 4.7 × 10 ⁸ N m ⁻² (correct to 2 sig figs)		
 	+				
- : 8	+	$\frac{3.848 \times 10^{-5}) = 4.677 \times 10^{8}}{-1} = \frac{\sigma L}{Y}$	$\frac{4.7 \times 10^8 \text{ N m}^{-2} \text{ (correct to 2 sig figs)}}{2}$		
- : 8	$= (1.8 \times 10^4) \div (3.8 \times 10^4)$	$3.848 \times 10^{-5}) = 4.677 \times 10^{8} = 4.677 \times 10^{10}$	$\frac{4.7 \times 10^8 \text{ N m}^{-2} \text{ (correct to 2 sig figs)}}{2}$ $\frac{10^{11}}{10^{11}}$		
8	$= (1.8 \times 10^{4}) \div (3^{4})$ 6.6 mm	$3.848 \times 10^{-5}) = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.7 \times 10^{8} \times 10^{8} \times 10^{8} \times 10^{8} = 4.7 \times 10^{8} \times 10^{8}$	$\frac{4.7 \times 10^8 \text{ N m}^{-2} \text{ (correct to 2 sig figs)}}{2}$ $\frac{10^{11}}{10^{11}}$	nder	
! 	$= (1.8 \times 10^{4}) \div (3^{4})$ 6.6 mm The bracing wire	$3.848 \times 10^{-5}) = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.7 \times 10^{8} \times 2.8 \div (2 \times 10^{8}) = 4.7 \times 10^{8} \times 10^{8} \times 10^{8} \times 10^{8} \times 10^{8} = 4.7 \times 10^{8} \times 10^{8} \times 10^{8} \times 10^{8} = 4.7 \times 10^{8} \times $	$4.7 \times 10^8 \text{ N m}^{-2}$ (correct to 2 sig figs)	nder	
)	6.6 mm 6.6 mm The bracing wire the force of the w	$3.848 \times 10^{-5}) = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.677 \times 10^{8} \times 10^{8} = 4.7 \times 10^{8} \times 10^{8} \times 10^{8} = 4.7 \times 10^{8} \times $	4.7×10^8 N m ⁻² (correct to 2 sig figs) $1000 \text{ mm} = 6.58 \text{ mm}$ the thin mast and stop it from moving unlike the thin mast and stop it from moving the exerts no force on the LH trestle.		
	$= (1.8 \times 10^{4}) \div (3^{4})$ 6.6 mm The bracing wire	$3.848 \times 10^{-5}) = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.7 \times 10^{8} \times 2.8 \div (2 \times 10^{8})$ $= 4.7 \times 10^{8} \times 2.8 \div (2 \times 10^{8})$ $= 0.00658 \text{ m} = 0.00658 \times 10^{8}$ s and spreaders help to stiffengind on the sail. The plank will tip when it of the RH trestle when it start the	4.7×10^8 N m ⁻² (correct to 2 sig figs) 1000 mm = 6.58 mm the thin mast and stop it from moving understand the LH trestle. It trestle & let the distance of the man from the stop tip be x :		
)	6.6 mm 6.6 mm The bracing wire the force of the w	$3.848 \times 10^{-5}) = 4.677 \times 10^{8} = 4.677 \times 10^{8} = 4.7 \times 10^{8} \times 2.8 \div (2 \times 10^{8})$ $= 4.7 \times 10^{8} \times 2.8 \div (2 \times 10^{8})$ $= 0.00658 \text{ m} = 0.00658 \times 10^{8}$ s and spreaders help to stiffengind on the sail. The plank will tip when it of the RH trestle when it start the	4.7 × 10 ⁸ N m ⁻² (correct to 2 sig figs) 1000 mm = 6.58 mm the thin mast and stop it from moving usexerts no force on the LH trestle. I trestle & let the distance of the man from the stop in the man from the stop in the man from the stop in the stop in the man from the stop in the stop i		

O

Detailed study 3 – Further electronics

Answer

Solution

 Λ single diode will produce a half-wave rectified signal. Half-wave signal can be drawn with either polarity.

1

 $\frac{1}{1}$ k Ω

$$τ = R C \implies R = τ ÷ C$$

$$= 100 × 10^{-3} ÷ (100 × 10^{-6}) = 1000 Ω = 1 kΩ$$

the size of the ripple voltage can be calculated by: $V_{\text{ripple}} = \frac{V_{\text{max}}T}{RC}$

$$= 2 \times 20 \times 10^{-3} \div (1000 \times 100 \times 10^{-6}) = 0.4 \text{ V}$$

OR

since $\tau = 100$ ms and the period of the signal = 20 ms, there will be only a small ripple voltage and this can be drawn on the graph.

Remember that the diode will take out about 0.7 V, lowering the graph significantly.

3

Q	Answer	Solution
4	20 V	$V_{\text{tot}} = 1 + R_{\text{bad}} = 2 \times 10 = 20$
5	100 turns	$\frac{N}{N_s} = \frac{V_s}{V_p} \implies N_S = 20 \times 1200 \div 240 = 100$
i	<u></u> .	consequential answer: answer 4 × 5
6	40 W	$P_{input} = P_{output} = V_S \times I_S = 20 \times 2 = 40 \text{ W}$ $consequential answer: \text{ answer } 4 \times 2$
7	0.17 A	$\frac{I_p}{I_s} = \frac{N_s}{N_p} = \frac{V_s}{V_p}$ $\Rightarrow I_p = 100 \times 2 \div 1200 = 0.17 \text{OR} I_p = 20 \times 2 \div 240 = 0.17$ $consequential \ answer: \text{ answer } 5 \div 600 \text{OR} \text{ answer } 4 \div 120$
	Full-wave rectific	cation is achieved by using a 4-diode bridge.
8	AC V _{inout}	
	Note that the diodes in the bridge must be oriented correctly for the circuit to wor	
9	Add a capacitor between the bridge rectifier and the load resistor in parallel with the load resistor. (Can be shown on the diagram).	
10	120 mV	The peak value of the signal covers 1.2 cm $V_{peak} = 1.2 \text{ cm} \times 100 \text{ mV cm}^{-1} = 120 \text{ mV}$
11	16 ms	The period of the signal covers 1.6 cm $T = 1.6 \text{ cm} \times 10 \text{ ms cm}^{-1} = 16 \text{ ms}$