# 2024 VCE Mathematical Methods Year 12 Trial Examination 1



Quality educational content

Kilbaha Education (Est. 1978) (ABN 47 065 111 373)

PO Box 3229

Cotham Vic 3101

Australia

PayID: 47065111373

Email: kilbaha@gmail.com

Tel: (03) 9018 5376

Web: https://kilbaha.com.au

All publications from Kilbaha Education are digital and are supplied to the purchasing school in both WORD and PDF formats with a school site licence to reproduce for students in both print and electronic formats.

# Victorian Certificate of Education 2024

### STUDENT NUMBER

|         |  |  |  |  |  | icuci |
|---------|--|--|--|--|--|-------|
| Figures |  |  |  |  |  |       |
| Words   |  |  |  |  |  |       |

### **MATHEMATICAL METHODS**

### **Trial Written Examination 1**

Reading time: 15 minutes Total writing time: 1 hour

### **QUESTION AND ANSWER BOOK**

### Structure of book

| Number of | Number of questions | Number of |
|-----------|---------------------|-----------|
| questions | to be answered      | marks     |
| 10        | 10                  | 40        |
|           |                     |           |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software) notes of any kind, blank sheets of paper, and/or correction fluid/tape.

#### Materials supplied

- Question and answer book of 16 pages.
- Detachable sheet of miscellaneous formulas at the end of this booklet.
- Working space is provided throughout the booklet.

#### **Instructions**

- Detach the formula sheet from the end of this book during reading time.
- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Latter

### **Instructions**

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

**Question 1** (4 marks)

- a. Evaluate f'(2), where  $f(x) = \log_e(\sqrt{x^3 + 1})$ .
- **b.** If  $\frac{d}{dx} \left( \frac{x}{\sqrt{4x+9}} \right) = \frac{px+q}{(4x+9)^n}$ , find the values of p, q and n.

**Question 2** (3 marks)

**a.** Solve for *x* if  $3^{x^2+6x} = \frac{1}{243}$ 

1 mark

**b.** Solve for x if  $\log_2(x^2 + 4\sqrt{2}) + \log_2(x^2 - 4\sqrt{2}) = 5$ 

2 marks

| <br> |      |
|------|------|
|      | <br> |
| <br> | <br> |
| <br> |      |
| <br> | <br> |
|      |      |
|      | <br> |

| <b>Ouestion</b> | 3        | (3 | marks) | ١ |
|-----------------|----------|----|--------|---|
| Oucsuon         | <i>J</i> | U  | marks  | , |

Find the values of a and b for which the simultaneous linear equations,

| 2ax - 2by = 5        |                                       |
|----------------------|---------------------------------------|
| (1-3b)x + 12y = 2-4b | have an infinite number of solutions. |

| <br> | <br> |
|------|------|
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> |      |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
| <br> | <br> |

| <b>Ouestion 4</b> | (3 marks) |
|-------------------|-----------|
| Outsuun T         | (2 marks) |

| Question 4 (3 marks)                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For random samples of six year 12 students, $\hat{P}$ represents the proportion of students who have                                                                                          |
| brown eyes. If $\Pr\left(\hat{P} = \frac{1}{3}\right) = \Pr\left(\hat{P} = \frac{1}{2}\right)$ find $\Pr\left(\hat{P} = 1\right)$ giving your answer in the form $\left(\frac{a}{b}\right)^n$ |
| where $a, b, n \in \mathbb{N}$ .                                                                                                                                                              |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |
|                                                                                                                                                                                               |

### **Question 5** (3 marks)

| Consider the function defined by $f(x) = \begin{cases} \sqrt{5-x^2}, & x \le 2 \\ ax^2 + bx, & x > 2 \end{cases}$ where $a$ and $b$ are real numbers. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| If the function has a smooth join at $x = 2$ , find the values of $a$ and $b$ .                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
| Question 6 (3 marks)                                                                                                                                  |
| A certain curve has its gradient given by $5\sin\left(\frac{x}{2}\right) + me^{-2x} + 4$ , if the curve has a turning point at the                    |
| origin, find the value of $m$ and the equation of the curve.                                                                                          |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |
|                                                                                                                                                       |

**Question 7** (6 marks)

**a.** Find the general solution of  $2\sin^2(2x) + \cos(2x) - 1 = 0$  for  $x \in R$ .

3 marks

| <br> | <br> |
|------|------|
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |

Consider the functions  $f:[0,2\pi] \to R$ ,  $f(x) = 2\sin^2(2x)$  and  $g:[0,2\pi] \to R$ ,  $g(x) = 1 - \cos(2x)$ , on the axes below, sketch the graphs of the functions y = f(x) and y = g(x) and determine  $2\sin^2(2x) < 1 - \cos(2x)$  for  $x \in [0,2\pi]$ .

3 marks



1 mark

| <b>Question 8</b> | (4 marks)               |
|-------------------|-------------------------|
| Oucsuon o         | ( <del>+</del> 111a1x5) |

Given the two functions  $f(x) = \log_e(x-2)$  and  $h(x) = 6+3x-x^2$  defined on their maximal domains.

| a. | Explain why $f \circ h(x)$ does not exist. |  |
|----|--------------------------------------------|--|
|    |                                            |  |
|    |                                            |  |

| <br> | <br> |
|------|------|
|      |      |
|      |      |

| b. | Consider $g: D \to R$ , $g(x) = 6 + 3x - x^2$ , find the largest subset D of R, |
|----|---------------------------------------------------------------------------------|
|    | such that $f \circ g(x)$ exists. Find the domain and rule for $f \circ g(x)$ .  |

| 3 marks |
|---------|
| <br>    |
|         |
| <br>    |
|         |
|         |
|         |
|         |
| <br>    |
| <br>    |
| <br>    |
| <br>    |
|         |

### **Question 9** (4 marks)

The diagram shows the two curves  $y = \sin(x)$  and  $y = \sin(x - \alpha) + c$ , where  $0 < \alpha < \frac{\pi}{2}$  and c > 0.



The two curves have a common tangent at x = b where,  $0 < b < \alpha < \frac{\pi}{2}$ , show that  $\sin(b) = \sin(\alpha - b)$  and express c in terms of  $\alpha$ .

### **Question 10** (7 marks)

**a.** The random variable X has a probability density function f given by

| $f(x) = \langle$ | $\begin{cases} \frac{a}{(2x+1)^2} \end{cases}$ | $1 \le x \le 4$ | where $a$ is a positive real number |
|------------------|------------------------------------------------|-----------------|-------------------------------------|
|                  |                                                | elsewhere       |                                     |

| i. | Show that $a = 9$ . |        |
|----|---------------------|--------|
|    |                     | 2 mark |
|    |                     |        |
|    |                     |        |
|    |                     |        |
|    |                     |        |
|    |                     |        |

 $\mathbf{ii.}$  Sketch the graph of f on the axes below, stating the coordinates of the endpoints.

1 mark



**b.** Another random variable Y has a probability density function g given by

$$g(y) = \begin{cases} \frac{b}{2y+1} & 1 \le y \le 4\\ 0 & \text{elsewhere} \end{cases}$$
 where *b* is a positive real number.

| Determine | E(Y), giving your answer in the form | $\frac{p}{\log_e(p)} + q$ where $p \in Z^+$ and $q \in R$ . | 4 marks  |
|-----------|--------------------------------------|-------------------------------------------------------------|----------|
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             | -        |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             | _        |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      |                                                             |          |
|           |                                      | -                                                           |          |
|           |                                      |                                                             | <u> </u> |
|           |                                      |                                                             |          |

# End of question and answer book for the 2024 Kilbaha VCE Mathematical Methods Trial Examination 1

| Kilbaha Education (Est. 1978) (ABN 47 065 111 373) | PayID: 47065111373          |
|----------------------------------------------------|-----------------------------|
| PO Box 3229                                        | Email: kilbaha@gmail.com    |
| Cotham Vic 3101                                    | Tel: (03) 9018 5376         |
| Australia                                          | Web: https://kilbaha.com.au |

# **MATHEMATICAL METHODS**

## Written examination 1

### **FORMULA SHEET**

### **Directions to students**

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

### **Mathematical Methods formulas**

### Mensuration

| area of a trapezium               | $\frac{1}{2}(a+b)h$    | volume of a pyramid | $\frac{1}{3}Ah$        |
|-----------------------------------|------------------------|---------------------|------------------------|
| curved surface area of a cylinder | $2\pi rh$              | volume of a sphere  | $\frac{4}{3}\pi r^3$   |
| volume of a cylinder              | $\pi r^2 h$            | area of triangle    | $\frac{1}{2}bc\sin(A)$ |
| volume of a cone                  | $\frac{1}{3}\pi r^2 h$ |                     |                        |

### Calculus

| $\frac{d}{dx}\left(x^n\right) = nx^{n-1}$  |                                                                      | $\int x^n dx = \frac{1}{n+1} x^{n+1} + c \ , \ n \neq -1$           |                                                                                      |  |
|--------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| $\frac{d}{dx}\Big(\big(ax+b\big)^n\Big) =$ | $na(ax+b)^{n-1}$                                                     | $\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$ |                                                                                      |  |
| $\frac{d}{dx}(e^{ax}) = ae^{ax}$           |                                                                      | $\int e^{ax} dx = \frac{1}{a} e^{ax}$                               | $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$                                            |  |
| $\frac{d}{dx}(\log_{e}(x)) = \frac{1}{2}$  | $\frac{1}{x}$                                                        | $\int \frac{1}{x} dx = \log_e(x)$                                   | (x)+c, x>0                                                                           |  |
| $\frac{d}{dx}(\sin(ax)) = a$               | $a\cos(ax)$                                                          | $\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$                        |                                                                                      |  |
| $\frac{d}{dx}(\cos(ax)) = -\frac{1}{2}$    | $-a\sin(ax)$                                                         | $\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$                       |                                                                                      |  |
| $\frac{d}{dx}(\tan(ax)) = \frac{1}{2}$     | $\frac{a}{\cos^2(ax)} = a\sec^2(ax)$                                 |                                                                     |                                                                                      |  |
| product rule                               | $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$                 | quotient rule                                                       | $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ |  |
| chain rule                                 | $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$                         | Newton's method                                                     | $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$                                             |  |
| trapezium rule approximation               | Area $\approx \frac{x_n - x_0}{2n} \left[ f\left(x_0\right) \right]$ | $+2f(x_1)+2f($                                                      | $(x_2) + + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n)$                                       |  |

### **Probability**

| $\Pr(A) = 1 - \Pr(A')$                         |                                      | $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$ |                                                                              |
|------------------------------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|
| $\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$ |                                      |                                               |                                                                              |
| mean                                           | $\mu = E(X)$                         | variance                                      | $\operatorname{var}(X) = \sigma^{2} = E((X - \mu)^{2}) = E(X^{2}) - \mu^{2}$ |
| binomial<br>coefficient                        | $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ |                                               |                                                                              |

| Probability distribution |                                               | Mean                                      | Variance                                                 |
|--------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| discrete                 | $\Pr(X=x) = p(x)$                             | $\mu = \sum x  p(x)$                      | $\sigma^2 = \sum (x - \mu)^2 p(x)$                       |
| binomial                 | $\Pr(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$ | $\mu = np$                                | $\sigma^2 = np(1-p)$                                     |
| continuous               | $\Pr(a < X < b) = \int_{a}^{b} f(x) dx$       | $\mu = \int_{-\infty}^{\infty} x f(x) dx$ | $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$ |

### **Sample proportions**

| $\hat{P} = \frac{X}{n}$ |                                                        | mean                            | $E(\hat{P}) = p$                                                                                          |
|-------------------------|--------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|
| standard<br>deviation   | $\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$ | approximate confidence interval | $\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$ |

### END OF FORMULA SHEET