

					Letter
STUDENT					
NUMBER					

MATHEMATICAL METHODS

Units 3 & 4 – Written examination 1

Reading Time: 15 minutes
Writing Time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper and/or white out liquid/tape, a calculator.

Materials supplied

- Question and answer book of 8 pages.
- Working space is provided throughout the book.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised devices into the examination room.

© TSSM 2023 Page 1 of 8

This page is blank

© TSSM 2023 Page 2 of 8

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question	Q	uestion	1
----------	---	---------	---

a. If $y = \frac{e^{2x}}{x^2}$ find $\frac{dy}{dx}$ in factorized form.	
	2 marks
b. Consider $f(x) = (x+1)log_e(3x^2)$. Find $f'(2)$	

2 marks

Question 2

Given
$$f'(x) = \sqrt{x-1} + 2e^x + \cos(x-1)$$
 and $f(1) = 0$, find $f(x)$.

2 marks

TURN OVER

© TSSM 2023 Page 3 of 8

Question 3
Solve $\log_2(2x) + \log_2(x+1) = 4$
3 marks
Question 4
David has a $\frac{1}{3}$ probability of catching the early train to work every morning, otherwise he catches the later train.
a. What is the probability David misses the early train four days in a row?
1 mark
b. What is the probability David catches the early train on at least three of the next four days?
2 marks
c. What is the probability David catches the early train on at least three of the next four days, given that he caught the early train at least once?

1 mark

© TSSM 2023 Page 4 of 8

Question 5

a. Consider $y(x) = 2 \tan(3x)$ for $x \in [0, \pi]$ labelling all intercepts and asymptotes.

3 marks

b.	Solve $y(x)$	+2 =	0 over x	$\in [0,\pi]$
----	--------------	------	------------	---------------

3 marks

TURN OVER

© TSSM 2023

Question	6

Consider $g: [a, \infty) \to R, g(x) = \frac{1}{2}x^2 - 2x + \frac{3}{2}$

a. Complete the square for g(x).

1 mark

b. Hence or otherwise, state a series of transformations that takes the graph of $y = x^2$ to y = g(x).

2 marks

c. State the smallest value of a such that g(x) is a 1:1 function.

1 mark

Let $h(x) = \sqrt{1 + 2x}$

d. Show that h(g(x)) is defined.

1 mark

e. State the rule for h(g(x)), assuming $x \ge 2$.

1 mark

Question 7

Consi	der $y_1(x) = -3x(x-2)^2(x-4)$ and $y_2(x) = -3x^2(x-2)(x+2)$.	
a.	State a single transformation that takes the graph of $y = y_1(x)$ to $y = y_2(x)$.	
b.	Find the co-ordinates of the stationary points of $y_2(x)$.	1 mark
		 2 marks
The ar	rea bounded by the x and y axes and the curve $y_1(x)$ is equivalent to $a \int_0^b y_2(x)$ State the values of a and b .	
d.	Hence find the area bounded by the x and y axes and the curve $y_1(x)$.	2 marks
		2 marks

TURN OVER

© TSSM 2023 Page 7 of 8

$\mathbf{\alpha}$		Ω
Ou	estion	ð

Question 5 Let p(x) be a probability density function such that:

$$p(x) = \begin{cases} ax^2 \log_e(x) & 0 \le x \le 1\\ 0 & \text{elswhere} \end{cases}$$

a.	Show by differentiation that the antiderivative of $x^{n-1}(n\log_e(x) + 1)$ is $x^n \log_e(x) + c$, where $c \in R$.	
b.	Hence or otherwise, find the value of a such that $p(x)$ is a probability density function.	2 marks
c.	Determine $E(X)$	3 marks

3 marks

END OF QUESTION AND ANSWER BOOK

© TSSM 2023 Page 8 of 8