Victorian Certificate of Education 2023

STUDENT NUMBER

					L	etter
Figures						
Words						

MATHEMATICAL METHODS

Trial Written Examination 1

Reading time: 15 minutes Total writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of	Number of questions	Number of
questions	to be answered	marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software) notes of any kind, blank sheets of paper, and/or correction fluid/tape.

Materials supplied

- Question and answer book of 17 pages.
- Detachable sheet of miscellaneous formulas at the end of this booklet.
- Working space is provided throughout the booklet.

Instructions

- Detach the formula sheet from the end of this book during reading time.
- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (3+2=5 marks)

a. If $f(x) = \frac{\tan(2x)}{12x}$ and $f'(\frac{\pi}{6}) = \frac{p\pi + q}{\pi^2}$ determine the values of the real constants p and q.

3 marks

b. Given that $\int_{b-1}^{b+1} \frac{1}{x} dx = \log_e \left(\frac{5}{3}\right)$, determine the value of b where b > -1.

Question	2	(3	marks)	١
A	_	ν-	111001110	,

Solve for <i>x</i> , positive ratio	$2^{x+3} = 3^{x+2}$, giving your nal numbers.	r answer in the forn	$ \frac{\log_{\epsilon}(c)}{\log_{\epsilon}(d)} $, where c as	nd <i>d</i> are

Question 3 (4 marks)

		$(2\pi x)$	2		
a.	Explain why the equation	$cos \boxed{3}$	$=x^{-}$	has a root between $x = 0$ and $x = 1$	

1 mark

b.	Using Newton's method, solve the equation $\cos\left(\frac{2\pi x}{3}\right) = x^2$ with a starting value of $x_0 = \frac{3}{2}$
	find the value of x_1 giving your answer in the form $\frac{a}{b}$ where $a, b \in Z^+$.
	find the value of giving your answer in the form where

Question + (5 marks	Que	stion	4	(3	marks
---------------------	-----	-------	---	----	-------

An approximate 95% confidence interval for the proportion of adult males over 50 years of age
who have high blood pressure is given by $(0.544, 0.736)$.
Given that $Pr(-2 < Z < 2) = 0.95$, where Z is the standard normal random variable, determine the
sample size used in the calculation of this confidence interval.

3 marks

Question 5 (8 marks)

a.	Find the general solution of $\sin(x) + \sqrt{3}\cos(x) = 0$ for $x \in R$.			
•••	Time the general selection of	2 marks		

b. Consider the function $f:[0,2\pi] \to R$, $f(x) = \sin(x) + \sqrt{3}\cos(x)$. Using calculus, determine the coordinates of the stationary points on the graph of y = f(x).

C. On the axes below, sketch the graphs of $y_1 = \sin(x)$ and $y_2 = \sqrt{3}\cos(x)$. Hence or otherwise sketch the graph of $f:[0,2\pi] \to R$, $f(x) = \sin(x) + \sqrt{3}\cos(x)$, labelling all axial intercepts, endpoints and turning points with their coordinates.

3 marks

Question 6 (5 marks)

Given the two functions $f(x) = \frac{1}{x-3}$ and $g(x) = 1 + 2\sin(x)$ defined on their maximal domains,

a. Determine whether or not the functions $f \circ g(x)$ or $g \circ f(x)$ exists, giving reasons for your answers, if the composite function exists, state its rule and domain.

2 marks

b. Find the values of x for which $f(x) < f^{-1}(x)$.

3 marks

Question 7 (6 marks)

The concentration of a drug in a body is given by F(t) where t is the time in hours after the drug is takn. Initially the concentration of the drug is zero. The rate of change of concentration of the drug is given by $F'(t) = 50e^{-0.5t} - 0.4F(t)$.

a. Using the product rule, show that $\frac{d}{dt}(F(t)e^{0.4t}) = 50e^{-0.1t}$

2 marks

b. Hence show that $F(t) = 500(e^{-0.4t} - e^{-0.5t})$

2 marks

 \mathbf{c} . The concentration of the drug increases to a maximum. Find the value of t when this

maximum occurs. Give your answer in the form integers.

 $a \log_{\epsilon} \left(\frac{b}{c}\right)$, where a,b and c are positive 2 marks

Question 8 (3 marks)

		$\frac{d}{dx}\left[x^2\log_{\epsilon}(x) - \frac{x^2}{2}\right]$	$= 2x\log_{\epsilon}(x)$
a.	Show that	dx $\begin{bmatrix} 2 \end{bmatrix}$	

1 mark

		f(x) = c	$\log_{\epsilon}(x)$	for $1 \le x \le e$
).	Given the continuous probability density function	J(x) -	0	for $1 \le x \le e$ otherwise

b.	Given the continuous probability density function
	Find $E(X)$.

2 marks

Question 9 (3 marks)

Part of the graph of the function $f:[0,\infty) \to R$, $f(x) = e^{\sin(\frac{\pi x}{2})}$ is shown below

a. Determine the coordinates of the first two maximum and the first two minimum turning points.

2 marks

b. State the period of the function.

1 mark

End of question and answer book for the 2023 Kilbaha VCE Mathematical Methods Trial Examination 1

Kilbaha Education
PO Box 2227
Kew Vic 3101
Australia

Tel: (03) 9018 5376
kilbaha@gmail.com
https://kilbaha.com.au

EXTRA WORKING PAGE

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c \ , \ n \neq -1$		
$\frac{d}{dx}\Big(\big(ax+b\big)^n\Big)=$	$na(ax+b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}(e^{ax}) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{2}$	<u>1</u> x	$\int \frac{1}{x} dx = \log_{\epsilon}$	$\int \frac{1}{x} dx = \log_{\epsilon}(x) + c, \ x > 0$	
$\frac{d}{dx}(\sin(\alpha x)) = a\cos(\alpha x)$		$\int \sin(\alpha x) dx = -\frac{1}{a} \cos(\alpha x) + c$		
$\frac{d}{dx}(\cos(\alpha x)) = -a\sin(\alpha x)$		$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{1}{a}$	$\frac{a}{\cos^2(ax)} = a\sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
trapezium rule approximation				

Probability

$\Pr(A) = 1 - \Pr(A')$		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$		
$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$				
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$	
binomial coefficient	$\binom{n}{x} = \frac{n!}{x!(n-x)!}$			

Probability distribution		Mean	Variance	
discrete	$\Pr(X = x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$	
binomial	$\Pr\left(X=x\right) = \binom{n}{x} p^{x} \left(1-p\right)^{n-x}$	$\mu = np$	$\sigma^2 = np(1-p)$	
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

END OF FORMULA SHEET