Victorian Certificate of Education 2022 | SUPERVISOR TO ATTACH PROCESSING LABEL HERE | | |--|--| | | | | | | | | | | | | | | | Letter | |----------------|--|--|--|--|--------| | STUDENT NUMBER | | | | | | # **MATHEMATICAL METHODS** ## Written examination 1 **Friday 27 May 2022** Reading time: 2.00 pm to 2.15 pm (15 minutes) Writing time: 2.15 pm to 3.15 pm (1 hour) ### **QUESTION AND ANSWER BOOK** ### Structure of book | Number of questions | Number of questions to be answered | Number of
marks | |---------------------|------------------------------------|--------------------| | 8 | 8 | 40 | - Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers. - Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape. ### Materials supplied - Question and answer book of 11 pages - Formula sheet - Working space is provided throughout the book. ### **Instructions** - Write your **student number** in the space provided above on this page. - Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. - All written responses must be in English. ### At the end of the examination • You may keep the formula sheet. Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. ### THIS PAGE IS BLANK ### **Instructions** Answer all questions in the spaces provided. In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. **Question 1** (3 marks) **a.** If $y = \sin(x^2 + 1)$, find $\frac{dy}{dx}$. 1 mark **b.** If $f(x) = x^2 \log_e(x)$, find f'(e). 2 marks Question 2 (2 marks) Find f(x), given that f(0) = 3 and $f'(x) = \frac{2}{x+1} + 2\cos(x)$, where x > -1. # DO NOT WRITE IN THIS AREA ### **Question 3** (2 marks) A marketing company wants to estimate the proportion of a population who regularly ride bicycles for exercise. The company randomly samples 100 people from this population and finds that 10 of these people regularly ride bicycles for exercise. Using z = 2, find an approximate 95% confidence interval for the true proportion of the population who regularly ride bicycles for exercise. ### Question 4 (7 marks) Consider the function $f: [0, 2\pi] \to R$, $f(x) = a \sin(x) + b$, given that $f\left(\frac{\pi}{2}\right) = 2$ and that $f\left(\frac{3\pi}{2}\right) = -8$. | Show that $a = 5$ and $b = -3$. | 1 ma | |----------------------------------|------| **b.** Sketch the graph of y = f(x) on the set of axes below. Label the endpoints and the turning points with their coordinates. 2 marks c. State the values of k for which the equation f(x) + k = 0, where $k \in R$, has no solution for x. 2 marks | value of m for which $\int_0^{\pi} (f(x) + m) dx = 0$, where $m \in R$. | |---| | value of m for which $\int_0^{\pi} (f(x) + m) dx = 0$, where $m \in$ | ### **Question 5** (4 marks) Consider the function with rule $f(x) = e^{1-x}$. **a.** Simplify $\frac{f(x)}{f(-x)}$. Express your answer in the form e^{kx} , where k is an integer. 1 mark **b.** Show that $f(a) \times f(b) = f(a + b - 1)$. 1 mark c. Solve f(x) = 2 for x. Give your answer in the form $x = \log_e \left(\frac{m}{n}\right)$, where $m, n \in R$. ### **Question 6** (6 marks) In a particular city, the probability that it will snow on Monday is x^2 . If it does snow on Monday, the probability that it will snow on Tuesday is $\frac{1}{4}x$. If it does not snow on Monday, the probability that it will snow on Tuesday is x. | i. | Find an expression, in terms of <i>x</i> , that gives the probability that it will snow on both Monday and Tuesday. | 1 mar | |-----|--|--| | ii. | Find the value of <i>x</i> if there is a 25% chance that it will snow on both Monday and Tuesday. | 1 mar | | i. | Find an expression, in terms of x , that gives the probability that it will snow on Tuesday. | l mar | | ii. | Find the value of x that will result in the highest probability that it will snow on Tuesday and find the probability for this value of x in the form $\frac{a}{b}$, where $a, b \in Z$. | 3 mark | | | | - | | | ii. | ii. Find the value of x if there is a 25% chance that it will snow on both Monday and Tuesday. i. Find an expression, in terms of x, that gives the probability that it will snow on Tuesday. ii. Find the value of x that will result in the highest probability that it will snow on Tuesday | ### **Question 7** (7 marks) - **a.** Consider the function p, where $p:[1,\infty)\to R$, $p(x)=x^4-x^3-x^2+x+1$. - i. Find the value of a when $p^{-1}(a) = 2$, where $a \in R$. 2 marks ii. Find the value of b when p(b) = 1, where b > 0. 2 marks **b.** Find the rule and the domain of f^{-1} , the inverse of f, if $f: R \setminus \{2\} \to R$, $f(x) = \frac{x+3}{x-2}$. **CONTINUES OVER PAGE** # O NOT WRITE IN THIS AREA ### **Question 8** (9 marks) Part of the graph of the function f, where $f: (-\infty, 0] \to R$, $f(x) = e^x \sin(x)$, is shown below. **a.** Find the general solution to f(x) = 0. 2 marks | b. | Find the general | solution to | f'(x) = 0. | |----|------------------|-------------|------------| | | Show that $\frac{d}{dx} \left(e^x \sin(x) - e^x \cos(x) \right) = 2e^x \sin(x)$. | | |-----|--|-----| | | | | | ii. | Hence, find the area bounded by the graph of the function f and the horizontal axis over the interval $x \in [-\pi, 0]$. | 2 m | | | | | | | | | | | | | | Con | sider the function | | | | $g: R \to R, \ g(x) = \begin{cases} -\frac{2e^{\pi}}{1 + e^{\pi}} e^{x} \sin(x) & -\pi \le x \le 0\\ 0 & \text{elsewhere} \end{cases}$ | | | The | continuous random variable X has the probability density function g . | | | | is the value of x for which g has a maximum value, find $Pr(X < x_m)$. | 2 m | | | | | # Victorian Certificate of Education 2022 # **MATHEMATICAL METHODS** # Written examination 1 ### **FORMULA SHEET** ### Instructions This formula sheet is provided for your reference. A question and answer book is provided with this formula sheet. Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. # **Mathematical Methods formulas** ### Mensuration | area of a trapezium | $\frac{1}{2}(a+b)h$ | volume of a pyramid | $\frac{1}{3}Ah$ | |-----------------------------------|------------------------|---------------------|------------------------| | curved surface area of a cylinder | $2\pi rh$ | volume of a sphere | $\frac{4}{3}\pi r^3$ | | volume of a cylinder | $\pi r^2 h$ | area of a triangle | $\frac{1}{2}bc\sin(A)$ | | volume of a cone | $\frac{1}{3}\pi r^2 h$ | | | ### Calculus | $\frac{d}{dx}\left(x^n\right) = nx^{n-1}$ | | $\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$ | | |--|--|---|--| | $\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^n$ | $b)^{n-1}$ | $\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$ | | | $\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$ | | $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$ | | | $\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$ | | $\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$ | | | $\frac{d}{dx}(\sin(ax)) = a \cos(ax)$ | | $\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$ | | | $\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$ | c) | $\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$ | | | $\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$ | $= a \sec^2(ax)$ | | | | product rule | $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ | quotient rule | $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ | | chain rule $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ | | | | ## **Probability** | $\Pr(A) = 1 - \Pr(A)$ | A') | $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$ | | |--|------------------------|---|---| | $\Pr(A B) = \frac{\Pr(A B)}{\Pr(A B)}$ | $\frac{A \cap B}{(B)}$ | | | | mean | $\mu = E(X)$ | variance | $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$ | | Probability distribution | | Mean | Variance | |--------------------------|---|---|--| | discrete | $\Pr(X=x) = p(x)$ | $\mu = \sum x p(x)$ | $\sigma^2 = \sum (x - \mu)^2 p(x)$ | | continuous | $\Pr(a < X < b) = \int_{a}^{b} f(x) dx$ | $\mu = \int_{-\infty}^{\infty} x \ f(x) dx$ | $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$ | # Sample proportions | $\hat{P} = \frac{X}{n}$ | | mean | $E(\hat{P}) = p$ | |-------------------------|--|---------------------------------|---| | standard
deviation | $\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$ | approximate confidence interval | $\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$ |