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MM12 Applications of Calculus and Antidiffrentiation Test 2019

Section A: Short Answer Time allowed: 20 minutes

Total 19 marks

1. Find the equation of the tangent to the curve y 2 — 4x + 1 at the point (2, 5)
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a. Find the exact coordinates of the turning points.
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Sketch the graph of y = f'(ix), clearly labelling coordinates of intercepts, turning points and
endpoints. y
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3. A farmer wishes to build a fence around a rectangular field. He has 100m of fencing wire and will use a
river running through his land as a boundary.
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a. Find an expression for y in terms of x.
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b. Show that the area, 4 of the field is given by the function A = 100x — 2x2.
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d. Hence, find the maximum area of the field.
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4 a. Find [(x —x2)dx
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Section B: Multiple Choice Calculators are allowed Time allowed: 25 minutes

7+19 = 26 marks

Circle Correct Response

1 If f(x) = x2(x — 2) then f'(2) equals
A, -1
B. 0

4

D. -4
E. 10

2, The equation of the tangent to the curve f(x) = 2x? ~ 3x + 1 at the y-intercept is
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* =0
B. y=3x+1
C.y==-3x-1
D y=-3x
E.y=3

3. A car is driving in a straight line. Its position, x (in metres), from the origin, is given by the following
equation.

x(t) = 2t% + 5t + 10 for ¢ = 0, whre ¢ is the time in seconds.

The velocity of the car is 25 m/s when the time is

A. 10 seconds N Tnu T ke
B. -10 seconds
C. -5seconds Lk +»~€ = 25
(DD 5 seconds
E.  0Oseconds c =g
4. If the curve with the equation y = ax? + x + 1 has a stationary point at x = —2, then g equals
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5. The graph with equation y = bx? + 4 is shown. The area shaded is 8 square units. The value of b is;

A -12

B, -15
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6. If “|w = 2x + 4 and (0, 1) is a point on the curve y = f(x), then an expression for y is

A y=x?+4x = /WNJFTLA A
B.y=x+4x—-1
y=x+4
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E. y=2x?+4x—-1
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7. The value of bunmxw — 5)dx is
A0
B. 3
©9
D. 20
E. 37



SECTION C: ANALYSIS Calculators allowed
Unless otherwise stated, exact answers should be given

Answer all questions in the space allocated.

Question 1 (7 marks)
The graph of y=4—x is shown below. A tangent to the graph is drawn at point A, one of the X-intercepts

of the graph.
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a. Find the coordinates of the point A.

(1 mark)
( 2. Ou
b.  Show the equation of the tangent is y = —4x +8,
(2 marks)
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¢. Find the equation of the normal to the curve at point A.

(1 mark)
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d. Find the area of triangle OAB and hence find the exact value of the shaded area. Showing all
relevant working.
(3 marks)
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Question 2 (5 marks)

a. Find [(x? — 3x)dx

(2 marks)
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Part of the graph of y = x? — 3x is shown.
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b. Write the integral expression that could be used to find the shaded area.
(2 marks)
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= 3
¢. Hence, find the area of the shaded region.
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Question 3 (7 marks)

A closed cylindrical tank of height » metres and radius » metres has a volume of 647 cubic metres.
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a. Given that V = mr?h, find and expression for 4 in terms of .
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b. Given that surface area, 4, is given by 4 = 2nr? 4 2nrh, write an expression for 4 in terms of r.
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d. Hence find the values of » and A, (correct to 2 decimal places) that would give a minimum surface area.
Justify that your values give a minimum.
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