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MM12 Assignment 5 — Applications of Calculus and Antidifferentiation

Section A: Short Answer

Total 21 marks
Unless otherwise stated, exact answers should be given

1. Find the gradient function f'(x), given f(x) = (3x2 + 2){x? + 3x)
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2. Use the quotient rule to show that the derivative of f(x)= ww.wn is f'(x) = aw._p.wum
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Find the equation of the tangent to the curve ¥ = 2x® — x + 4 at the point (-1, 3).
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The graph of y=2x’+ax*+5b has a stationary point at (1, 7). Find the values of @ and 5.
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5. Find the following antiderivatives
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6. Find the value of the definite integral ﬁﬂ (2x% —x —3)dx
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7. It is known that f'(x) = x* — 2x* and /{0) = 6. Find f{x)
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Section B: Multiple Choice Calculators are allowed

Circle Correct Response

Name:

Time allowed: 25 minutes

1. The x-coordinates of the stationary points of the curve f C&u.wxu+£m+qxlmm are:
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4. A particle moves in a straight line so that its position x cm from a fixed point O at time ¢ seconds (¢ = 0)

is given by x = —F + 6/ — 24, The particle’s acceleration at £ = 3 is
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5. Which of the following sets describes the conditions for which the gradient of the graph of y = f{x) is
positive? (Coordinates given are those of intercepts and turning points.)
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SECTION C: ANALYSIS Calculators allowed
Unless otherwise stated, exact answers should be given

1. Wire is used to make the frame of a container in
the shape of a cuboid as shown in the diagram.
The total length of wire used to make the frame

was 18 m.
amp———
a ShowthatL = olmmx.
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b Show that the volume can be expressed as ¥ = 9x* —6x’
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¢ Find the maximum volume of the container and the corresponding dimensions. You are
not required to justify it is a maximum.
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2. A particle moves in a straight line and starts from a position one metre left of a fixed point O on the line.
Its velocity v m/s® is given by v = 15t — 9t2 for any time ¢ seconds, ¢ 0.

a At what times is its velocity equal to zero?
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b What is the acceleration of the particle when t = 3?
a. = \§S —\&+
r:v/.lP(f ﬁ\nw a. = ..lWh,rr~MQ|
(2 marks)
c What is its displacement from O at any time ¢ seconds?
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d Find the total distance covered by the particle in the first 2 seconds.
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3. The graph of f(x) = x® — 2x2? — 3x is shown below. The tangent lines to the curve at the points P
and Q are parallel] to the x-axis.
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a Find the derivative f'(x)
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b Find the x values of the coordinates of points P and Q.
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c Find the equation of the tangent line to the curve at point (1, -4).
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d Find the equation of the normal to the curve at point (-1, 0).
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Write the integral expression that could be used to find the area bound by the curve and the x axis
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Hence, find the area bound by the curve and the x-axis
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End of Section C
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