MATHS METHODS UNITS 3&4

Exam 1 Question Booklet Exam 2 Question Booklet Worked Solution Booklet

ATAR Notes

A collaboration by:

LUKE SANTOMARTINO
MICHAEL REHFISCH
REBECCA WILLIAMS
SEPEHR RASEKHI

ATAR Notes

						Lotter
STUDENT NUMBER						

Letter

MATHEMATICAL METHODS

Written examination 1

2019

Reading time: 9:00 a.m. to 9:15 a.m. (15 minutes) Writing time: 9:15 a.m. to 10:15 a.m. (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 10 pages
- · Formula sheet
- Working space is provided throughout the book

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (3 marks)

Differentiate f with respect to x .	
	· · · · · · · · · · · · · · · · · · ·
Let $g(x) = (3 - x) \log_e(x^2)$.	
Let $g(x) = (3 - x) \log_e(x^2)$. Evaluate $g'(1)$.	2
	2

Question 2 (3 marks)

Let $f: R \to R$, $f(x) = \frac{1}{2} \tan \left(x + \frac{\pi}{4}\right)$.

a. Find f'(x).

1 mark

Let θ be the angle from the positive direction of the x-axis to the tangent of the graph of f, measured in the anticlockwise direction.

b. Find the smallest positive value for x for which $\theta = 45^{\circ}$.

2 marks

2019 MATHMETH EXAM 1

4

Question 3 (5 marks)

Let
$$f: [-4,0) \to R$$
, $f(x) = \frac{2}{x^2} + 1$.

a. Sketch the graph of f. Label any endpoints and axis intercepts with their coordinates and label any asymptotes with the appropriate equation.

3 marks

b. Find the area enclosed by the graph of f, the lines x = -3 and x = -1, and the x-axis.

2 marks

Question	4	(6	marks`)
V account	•	ι υ	IIIMIIID	,

In a large forest, one quarter of all trees are infected with cinnamon fungus. For a sample of size n taken from the population of trees, \hat{P} is the random variable that represents the proportion of trees infected with cinnamon fungus.

Let n = 3. Find $E(\hat{P})$. 1 mark Find $\Pr\left(\hat{P} \ge \frac{1}{3}\right)$. b. 2 marks Let n = 27. Assume \hat{P} is normally distributed. Find sd(\hat{P}). Express your answer in the form $\frac{1}{a}$, where a is a positive integer. c. 1 mark Find $\Pr\left(\widehat{P} \geq \frac{1}{3}\right)$. d. 2 marks

Outsuon 3 (3 marks)	Question	5	(5	marks)	
---------------------	----------	---	----	--------	--

Fine	d the rule of h , where $h(x) = f(g(x))$.	1
		1
i.	State the value of a which gives the maximal domain of h .	
	State the value of a which gives the maximal domain of the	1
-		
-		
ii.	For the value of a found in part b. i. , state the range of $h(x)$.	
111•	Tof the value of a found in part b. 1., state the range of h(x).	1
-		
-		
_		
Fine	d the largest value of a such that g^{-1} , the inverse function of g , exists.	
		2 1

Question 6	(2 marks))
Question o	L IIIuIII	ı

Two events, A and B, from a given event space, are such that $Pr(A) = \frac{2}{3}$ and Pr(B) = p.

a. If A and B are independent events, find Pr(B|A') in terms of p.
b. If A and B are mutually exclusive events, find Pr(B|A') in terms of p.
1 mark

Question 7 (4 marks)

A toaster manufacturer puts their products through three independent tests for quality. The three tests occur in sequence, and toasters that do not pass a test are immediately rejected. The probability that a toaster will be rejected at the first test is $\frac{1}{2}$, at the second test is $\frac{2}{5}$ and at the third test is $\frac{1}{6}$.

form $\frac{a}{b}$, where a and b are positive integers.	2
	_
	 _
	_
	 _
	 _
	 _
	_
test, the toaster will not be rejected. Express yo	_
test, the toaster will not be rejected. Express yo	_
test, the toaster will not be rejected. Express yo	2
Calculate the probability that, given a particula test, the toaster will not be rejected. Express you depositive integers.	_ 2
test, the toaster will not be rejected. Express yo	2
test, the toaster will not be rejected. Express yo	2
test, the toaster will not be rejected. Express yo	2
test, the toaster will not be rejected. Express yo	2
test, the toaster will not be rejected. Express yo	

Question	8	(4	marks`	١
Vacstion	v	١.	man	,

Solve $4\sin^2(x) + 1 = 4\sin(x)$ for x , where $0 \le x \le \pi$.	2
Solve $2\log_2(3-t) - \log_2(t+7) = 2$ for t, where $-7 < t < 3$	
Solve $2\log_3(3-t) - \log_3(t+7) = 2$ for t , where $-7 < t < 3$.	2
Solve $2\log_3(3-t) - \log_3(t+7) = 2$ for t , where $-7 < t < 3$.	2
Solve $2\log_3(3-t) - \log_3(t+7) = 2$ for t , where $-7 < t < 3$.	

Question 9 (8 marks)		
Let y	$y = x \cos(2\pi x + k)$, where k is a real constant.	
a.	Find $\frac{dy}{dx}$.	1 mark
A pro	obability density function f is given by $(\sin(2\pi x + k) + 1 0 < x < 1)$	_
	$f(x) = \begin{cases} \sin(2\pi x + k) + 1 & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$	
wher	$\text{re } 0 \le k < 2\pi.$	
b.	Using your result from part a. , or otherwise, show that the mean, μ , of this function is $\frac{1}{2\pi}(\pi - \cos(k))$.	
		4 marks
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
c.	Find the maximum value of μ and the value for k at which this maximum occurs.	3 marks
		_
		_
		_

END OF QUESTION AND ANSWER BOOK