The Mathematical Association of Victoria

Trial Examination 2017

MATHEMATICAL METHODS

WRITTEN EXAMINATION 1

STUDENT NAME	

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 10 pages,
- Formula Sheet
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Question 1 (5	marks)
---------------	--------

a. Find $\frac{dy}{dx}$ when $y = \tan(x^2 + 2)$.

2 marks

b. Find f'(-2) when $f(x) = \frac{\log_e(x^2 - 1)}{x^2 - 1}$.

3 marks

Question 2 (4 marks)

The depth of water in a wave pool during a particular hour is given by $d(t) = -5\cos\left(\frac{\pi t}{8}\right) + 5$ metres, where t is the time in minutes and $0 \le t \le 60$.

a. Find the value of t for which the depth of water is first at its maximum.

1 mark

b. Find the fraction of time for the particular hour when the depth of water is more than 2.5 metres.

3 marks

Question 3 (7 marks)

Consider the polynomial $P(x) = 5x^3 - x^2 + x + 7$.

a.	Find a linear factor of $P(x)$.	1 mark
b.	Find $Q(x)$, the quadratic factor of $P(x)$.	1 mark
с.	Show that there are no linear factors for $Q(x)$.	1 mark
d.	The graph of $y = P(x)$ has no stationary points. Find the x coordinate of the point where the gradient of the graph of P is a minimum.	2 marks

e. Hence sketch the graph of y = P(x) labelling any axial intercepts with coordinates.

2 marks

Question 4 (6 marks)

Let $f(x) = x \sin(x)$.

a.	Find the average rate of change of f over the interval $\left[\frac{\pi}{2}, \pi\right]$.	2 marks
b.	Find $f'(x)$.	 1 mark
с.	Hence find $\int_{0}^{\frac{\pi}{2}} x \cos(x) dx$.	3 marks

Question 5 (3 marks)	
Solve $\log_2((2x-2)^2) - 4\log_2(1-x) = 1$ for x.	
They randomly selected 10 000 teenagers and fo	of teenagers in Australia who smoke on a regular basis. and 2000 of them smoke regularly. Find an approximate enagers in Australia who smoke on a regular basis. Use an r calculation.

Question 7 (5 marks)

A random variable X has a probability density function given by

$$g(x) = \begin{cases} x & 0 \le x \le 1 \\ \frac{1}{x^2} & 1 < x \le a \text{, where } a \text{ is a real constant.} \\ 0 & \text{elsewhere} \end{cases}$$

a.	Show that $a = 2$.	2 marks
b.	Find $E(X)$.	3 marks
		

Question 8 (7 marks)

Consider the functions f and g with rules $f(x) = 3\sqrt{4-2x} + 1$ and $g(x) = \sqrt{x} + 4$.

a. If the graph of f is mapped to the graph of g using the transformation

 $T: \mathbb{R}^2 \to \mathbb{R}^2, T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \left(\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}\right), \text{ find } a, b, c \text{ and } d, \text{ where } a, b, c \text{ and } d \text{ are real constants.}$

b. Find the rule for f^{-1} and state the domain. 2 marks

3 marks

c.	Find the rule for $g(f(x))$ and state the range.	2 marks

END OF QUESTION AND ANSWER BOOK