

Trial Examination 2016

VCE Mathematical Methods Units 3&4

Written Examination 2

Formula Sheet

Directions to students

This formula sheet is provided for your reference.

MATHEMATICAL METHODS FORMULAS

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$	
$\frac{d}{dx}((ax+b)^n) = an(ax+b)^n$	$+b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)}$	$\int (ax+b)^{n+1} + c, n \neq -1$
$\frac{d}{dx}(e^{ax}) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, x >$	0
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax)$	c) + c
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	(°)	$\int \cos(ax)dx = \frac{1}{a}\sin(ax)$	+ <i>c</i>
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$= a \sec^2(ax)$		
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		

Probability

Pr(A) = 1 - Pr(A')		$Pr(A \cup B) =$	$Pr(A) + Pr(B) - Pr(A \cap B)$
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$	<u>B)</u>		
mean	$\mu = E(X)$	variance	$Var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X = x) = p(x)$	$\mu = \Sigma x p(x)$	$\sigma^2 = \Sigma (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x)dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

END OF FORMULA SHEET