The Mathematical Association of Victoria

Trial Examination 2016

MATHEMATICAL METHODS

WRITTEN EXAMINATION 1

STUDENT NAME	
-	

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calcualtors or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 12 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Ouestion	1	11	marke
Question		(4	marks

Question 1 (4 marks) **a.** If $f(x) = \log_e(\cos(4x))$ find f'(x). Express your answer in the form $A \tan(Bx)$ where *A* and *B* are real numbers.

2 marks

b. i. Factorise $x^3 - 3x^2 + 3x - 1$.

1 mark

ii. Hence, antidifferentiate $\frac{1}{(1-x)(x^3-3x^2+3x-1)}$.

1 mark

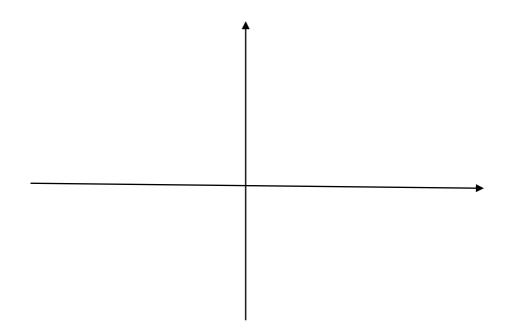
TURN OVER

2016 MAV	Mathematical	Methods	Trial	Exam]
----------	---------------------	---------	-------	------	---


Question 2 (3 marks) The depth, d(t) m, of water at a pier t hours after midnight on a particular 24 hour day is given by $d(t) = 2\sin\left(\frac{\pi t}{6}\right) + 5$. Find the values of t for which the depth is greater than 6 m.

Question 3 (5 marks)

Consider the function $g:[0,2] \to R, g(x) = 2x^5 - 10x^4 + 20x^3 - 20x^2 + 10x + 2$.


a. Find A, B and C given $g(x) = A(x+B)^5 + C$, where A, B and C are real constants.

3 marks

b. Sketch the graph of g on the set of axes below. Label the endpoints and any stationary points with their coordinates.

2 marks

Ouestion	4	(3	marks
Question	4	()	marks

a. Show that $x = \log_e(3)$ is a solution of the equation $\frac{9}{e^{2x}} - \frac{6}{e^x} + 2e^x = 5$. 1 mark

b. Hence, or otherwise, solve the equation $\frac{9}{e^{2x}} - \frac{6}{e^x} + 2e^x = 5$ for x, given that there are only two real solutions.

2 marks

Ouestion	5	(4	marks)

Question 5 (4 max Let $f(x) = xe^{2x}$.

۱.	Find $f'(x)$.	1 mark
).	Hence , find the average value of f over the interval $\left[0,\frac{1}{2}\right]$.	
		_ _ _
		_ _ _
		_ _
		- -
		_

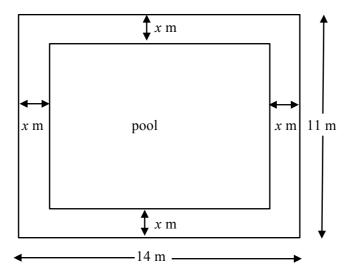
2016 MAV Mathematical Methods Trial Exam 1	20	116	MAV	Mathematical	Methods	Trial Exam 1	
--	----	-----	-----	--------------	---------	--------------	--

Question 6 (3 marks)
Find the values of A and B, where A and B are real constants, if the graph of $y = A \log_e (x - B)$ passes
through the points (2, 10) and (8, 20).

8

Question 7 (4 marks)

Two linear equations can be written in the form of


$$-2(m-1)x + my = -m+4$$
$$mx - 3y = 2m+1$$

where m is a real constant.

a.	Find the value(s) of m such that the graphs of the two lines have a unique solution.	2 marks
h	If $m = -1$, show that the line with equation $-2(m-1)x + my = -m + 4$ is a tangent to the	
υ.	parabola with the equation $y = mx^2 + 2x - 6$.	2 marks

Question 8 (6 marks)

Taren and Yao have a rectangular garden. It is 14 metres long and 11 metres wide. They want to put a rectangular swimming pool in the middle of the garden and a path of width x metres around the edge, as shown below.

a.	Show that an expression for the length of the diagonal of the pool in terms of x is	
	$\sqrt{8x^2-100x+317}$.	2 marks

Taren's swimming instructor insists that the length of the diagonal of the pool is at least 15 metres for their pool dancing lessons.

b.	For what value(s) of x will the diagonal be at least 15 metres in length?	3 marks

c. Yao wants the surface area of the floor of the pool to be at least 155 square metres. Show that this is not possible.

1 mark

Question 9 (8 marks)

	Suppose that 80% of all 16 year olds play basketball. If a sample of size 4 is taken find the probability that the sample proportion lies within and including one standard deviation of the population proportion.	3 mar
1	plays baskeball. The probability that Sam scores a goal every time she has a shot is 0.2.	
	Given that she scores no more than one goal in four shots, what is the probability the first two shots were not goals?	2 ma
	What is the least number of shots she needs to make to ensure the probability that she gets at least one goal is more than 0.9, given $\log_{10}(8) \approx 0.903$?	3 ma

END OF QUESTION AND ANSWER BOOKLET