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Question 1 (4 marks)
a. If f(x)=log, (cos(4x)) find f'(x). Express your answer in the form Atan(Bx) where

A and B are real numbers. 2 marks
b. i.Factorise x* -=3x?+3x-1. 1 mark
ii. Hence, antidifferentiate ! 1 mark

(1-x)(x* =3x>+3x-1)

TURN OVER
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Question 2 (3 marks)
The depth, d(f) m, of water at a pier ¢ hours after midnight on a particular 24 hour day is given by

d(t)= 2sin(%t) +5. Find the values of ¢ for which the depth is greater than 6 m.
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Question 3 (5 marks)
Consider the function g: [0,2] — R, g(x)=2x" =10x* +20x* = 20x> +10x +2 .

a. Find 4, B and C given g(x)= A(x+B)’+C , where 4, B and C are real constants. 3 marks

b. Sketch the graph of g on the set of axes below. Label the endpoints and any stationary points
with their coordinates. 2 marks

v

TURN OVER
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Question 4 (3 marks)

a. Show that x =log (3) is a solution of the equation %— g+ 2e" =5. 1 mark
e’ ¢

. . 9 6 N .
b. Hence, or otherwise, solve the equation ————+2e” =5 for x, given that there are only two
e’ ¢

real solutions. 2 marks
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Question 5 (4 marks)
Let f(x)=xe™".

a. Find f'(x). 1 mark
b. Hence, find the average value of fover the interval [O,%l . 3 marks
TURN OVER
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Question 6 (3 marks)
Find the values of 4 and B, where 4 and B are real constants, if the graph of y = Alog, (x - B) passes

through the points (2, 10) and (8, 20).
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Question 7 (4 marks)
Two linear equations can be written in the form of

—2(m—1)x+my=—m+4 .
where m is a real constant.
mx-3y=2m+1

a. Find the value(s) of m such that the graphs of the two lines have a unique solution. 2 marks

b. If m = -1, show that the line with equation —2(m - l)x +my=-m+4 is a tangent to the

parabola with the equation y =mx* +2x—-6. 2 marks

TURN OVER
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Question 8 (6 marks)
Taren and Yao have a rectangular garden. It is 14 metres long and 11 metres wide. They want to put a

rectangular swimming pool in the middle of the garden and a path of width x metres around the edge, as
shown below.
¢ A
xm

A
A 4
\4

xm pool xm| 1l m
A
‘txm v
< 14 m >

a. Show that an expression for the length of the diagonal of the pool in terms of x is
J8x> - 100x +317 . 2 marks

Taren’s swimming instructor insists that the length of the diagonal of the pool is at least 15 metres for their
pool dancing lessons.

b. For what value(s) of x will the diagonal be at least 15 metres in length? 3 marks

¢. Yao wants the surface area of the floor of the pool to be at least 155 square metres. Show that
this is not possible. 1 mark
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Question 9 (8 marks)

a. Suppose that 80% of all 16 year olds play basketball. If a sample of size 4 is taken find the
probability that the sample proportion lies within and including one standard deviation of the
population proportion. 3 marks

Sam plays baskeball. The probability that Sam scores a goal every time she has a shot is 0.2.

b. Given that she scores no more than one goal in four shots, what is the probability the first two
shots were not goals? 2 marks

c. What is the least number of shots she needs to make to ensure the probability that she gets at
least one goal is more than 0.9, given log, (8) =0.903 ? 3 marks
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END OF QUESTION AND ANSWER BOOKLET
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